Sujata B. Patil, Ranjit P. Nikam, Vaibhav C. Lokhande, Chandrakant D. Lokhande, Raghunath S. Patil
{"title":"Tungsten oxide/reduced graphene oxide composite electrodes for solid-state asymmetric supercapacitor application","authors":"Sujata B. Patil, Ranjit P. Nikam, Vaibhav C. Lokhande, Chandrakant D. Lokhande, Raghunath S. Patil","doi":"10.1007/s42114-025-01268-3","DOIUrl":null,"url":null,"abstract":"<div><p>Tungsten oxide (WO<sub>3</sub>) thin films were deposited on flexible stainless steel (SS) substrates via low-cost chemical bath deposition (CBD) method by varying concentration of sodium tungstate precursor (0.05–0.2 M). Also, tungsten oxide/reduced graphene oxide (WO<sub>3</sub>/rGO) nanocomposite thin films were deposited (0.15 M sodium tungstate precursor concentration) at different rGO concentration variations (0.5, 1, and 1.5 mg mL<sup>−1</sup>). The effect of precursor concentration and rGO addition on the physicochemical properties of electrodes was studied. The thin films of WR2 (deposited at 0.15 M sodium tungstate and 1 mg mL<sup>−1</sup> rGO concentration) nanocomposites exhibited a hexagonal crystal structure along with a surface morphology resembling nanorods. The appearance of rGO in WO<sub>3</sub>/rGO was proved from the FT-IR, RAMAN, and EDAX studies. WR2 nanocomposite thin film exhibited 1060 F g<sup>−1</sup> specific capacitance at scan rate of 5 mV s<sup>−1</sup>. The flexible WR2//PVA-H<sub>2</sub>SO<sub>4</sub>//activated carbon asymmetric (ASC) device was fabricated using WR2 as a negative electrode and activated carbon as a positive electrode which showed a specific capacitance of 175 F g<sup>−1</sup> with energy and power densities of 19.1 Wh kg<sup>−1</sup> and 0.43 KW kg<sup>−1</sup>, respectively, with 81.3% capacitive retention over 5000 CV cycles.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01268-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01268-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Tungsten oxide (WO3) thin films were deposited on flexible stainless steel (SS) substrates via low-cost chemical bath deposition (CBD) method by varying concentration of sodium tungstate precursor (0.05–0.2 M). Also, tungsten oxide/reduced graphene oxide (WO3/rGO) nanocomposite thin films were deposited (0.15 M sodium tungstate precursor concentration) at different rGO concentration variations (0.5, 1, and 1.5 mg mL−1). The effect of precursor concentration and rGO addition on the physicochemical properties of electrodes was studied. The thin films of WR2 (deposited at 0.15 M sodium tungstate and 1 mg mL−1 rGO concentration) nanocomposites exhibited a hexagonal crystal structure along with a surface morphology resembling nanorods. The appearance of rGO in WO3/rGO was proved from the FT-IR, RAMAN, and EDAX studies. WR2 nanocomposite thin film exhibited 1060 F g−1 specific capacitance at scan rate of 5 mV s−1. The flexible WR2//PVA-H2SO4//activated carbon asymmetric (ASC) device was fabricated using WR2 as a negative electrode and activated carbon as a positive electrode which showed a specific capacitance of 175 F g−1 with energy and power densities of 19.1 Wh kg−1 and 0.43 KW kg−1, respectively, with 81.3% capacitive retention over 5000 CV cycles.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.