ALDH2 Overexpression Improves the Blood-brain Barrier and Represses Mitochondrial Dysfunction in Chronic Cerebral Hypoperfusion Through the SIRT1/ROS Axis
Lu Liu, Qian Deng, Le Xie, Dahua Wu, Hang Zheng, Junlin Jiang, Hongmei Shi, Ting Yao
{"title":"ALDH2 Overexpression Improves the Blood-brain Barrier and Represses Mitochondrial Dysfunction in Chronic Cerebral Hypoperfusion Through the SIRT1/ROS Axis","authors":"Lu Liu, Qian Deng, Le Xie, Dahua Wu, Hang Zheng, Junlin Jiang, Hongmei Shi, Ting Yao","doi":"10.1007/s11064-025-04353-7","DOIUrl":null,"url":null,"abstract":"<div><p>The study investigated the mechanism of ALDH2 in mitochondrial dysfunction and blood-brain barrier (BBB) damage arising from chronic cerebral hypoperfusion (CCH). A rat model of bilateral common carotid artery occlusion (BCCAO) was established and treated with AAV-ALDH2. ALDH2 expression, cognitive function, and levels of inflammation- and oxidative stress-related factors, were examined, followed by observing changes in BBB and mitochondrial functions. A rat neuron model of oxygen glucose deprivation/re-oxygenation (OGD/R) was constructed and treated with AAV-ALDH2 and the SIRT1 inhibitor Sirtinol. 4-HNE, SIRT1, ROS levels, mitochondrial membrane potential (MMP), and ATP production were detected, followed by oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays. ALDH2 was down-regulated in BCCAO-modeled rats. In BCCAO-modeled rats, ALDH2 overexpression repressed learning/memory deficits and BBB leakage, elevated SOD and GSH levels, decreased the levels of inflammation-related factors, ROS, 4-HNE, and MDA, and improved mitochondrial morphology. In OGD/R-stimulated neurons, ALDH2 overexpression diminished ROS and 4-HNE levels and ECAR and increased MMP, OCR, and ATP production, which was abrogated by Sirtinol. Overall, ALDH2 up-regulation exerts suppressive effects on BBB damage and mitochondrial dysfunction in CCH via the SIRT1/ROS axis.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04353-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigated the mechanism of ALDH2 in mitochondrial dysfunction and blood-brain barrier (BBB) damage arising from chronic cerebral hypoperfusion (CCH). A rat model of bilateral common carotid artery occlusion (BCCAO) was established and treated with AAV-ALDH2. ALDH2 expression, cognitive function, and levels of inflammation- and oxidative stress-related factors, were examined, followed by observing changes in BBB and mitochondrial functions. A rat neuron model of oxygen glucose deprivation/re-oxygenation (OGD/R) was constructed and treated with AAV-ALDH2 and the SIRT1 inhibitor Sirtinol. 4-HNE, SIRT1, ROS levels, mitochondrial membrane potential (MMP), and ATP production were detected, followed by oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays. ALDH2 was down-regulated in BCCAO-modeled rats. In BCCAO-modeled rats, ALDH2 overexpression repressed learning/memory deficits and BBB leakage, elevated SOD and GSH levels, decreased the levels of inflammation-related factors, ROS, 4-HNE, and MDA, and improved mitochondrial morphology. In OGD/R-stimulated neurons, ALDH2 overexpression diminished ROS and 4-HNE levels and ECAR and increased MMP, OCR, and ATP production, which was abrogated by Sirtinol. Overall, ALDH2 up-regulation exerts suppressive effects on BBB damage and mitochondrial dysfunction in CCH via the SIRT1/ROS axis.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.