Moises Ponce, Rebekah Herrman, Phillip C. Lotshaw, Sarah Powers, George Siopsis, Travis Humble, James Ostrowski
{"title":"Graph decomposition techniques for solving combinatorial optimization problems with variational quantum algorithms","authors":"Moises Ponce, Rebekah Herrman, Phillip C. Lotshaw, Sarah Powers, George Siopsis, Travis Humble, James Ostrowski","doi":"10.1007/s11128-025-04675-z","DOIUrl":null,"url":null,"abstract":"<div><p>The quantum approximate optimization algorithm (QAOA) has the potential to approximately solve complex combinatorial optimization problems in polynomial time. However, current noisy quantum devices cannot solve large problems due to hardware constraints. In this work, we develop an algorithm that decomposes the QAOA input problem graph into a smaller problem and solves MaxCut using QAOA on the reduced graph. The algorithm requires a subroutine that can be classical or quantum—in this work, we implement the algorithm twice on each graph. One implementation uses the classical solver Gurobi in the subroutine and the other uses QAOA. We solve these reduced problems with QAOA. On average, the reduced problems require only approximately 1/10 of the number of vertices than the original MaxCut instances. Furthermore, the average approximation ratio of the original MaxCut problems is 0.75, while the approximation ratios of the decomposed graphs are on average of 0.96 for both Gurobi and QAOA. With this decomposition, we are able to measure optimal solutions for ten 100-vertex graphs by running single-layer QAOA circuits on the Quantinuum trapped-ion quantum computer H1-1, sampling each circuit only 500 times. This approach is best suited for sparse, particularly <i>k</i>-regular graphs, as <i>k</i>-regular graphs on <i>n</i> vertices can be decomposed into a graph with at most <span>\\(\\frac{nk}{k+1}\\)</span> vertices in polynomial time. Further reductions can be obtained with a potential trade-off in computational time. While this paper applies the decomposition method to the MaxCut problem, it can be applied to more general classes of combinatorial optimization problems.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04675-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum approximate optimization algorithm (QAOA) has the potential to approximately solve complex combinatorial optimization problems in polynomial time. However, current noisy quantum devices cannot solve large problems due to hardware constraints. In this work, we develop an algorithm that decomposes the QAOA input problem graph into a smaller problem and solves MaxCut using QAOA on the reduced graph. The algorithm requires a subroutine that can be classical or quantum—in this work, we implement the algorithm twice on each graph. One implementation uses the classical solver Gurobi in the subroutine and the other uses QAOA. We solve these reduced problems with QAOA. On average, the reduced problems require only approximately 1/10 of the number of vertices than the original MaxCut instances. Furthermore, the average approximation ratio of the original MaxCut problems is 0.75, while the approximation ratios of the decomposed graphs are on average of 0.96 for both Gurobi and QAOA. With this decomposition, we are able to measure optimal solutions for ten 100-vertex graphs by running single-layer QAOA circuits on the Quantinuum trapped-ion quantum computer H1-1, sampling each circuit only 500 times. This approach is best suited for sparse, particularly k-regular graphs, as k-regular graphs on n vertices can be decomposed into a graph with at most \(\frac{nk}{k+1}\) vertices in polynomial time. Further reductions can be obtained with a potential trade-off in computational time. While this paper applies the decomposition method to the MaxCut problem, it can be applied to more general classes of combinatorial optimization problems.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.