{"title":"A (t, n) threshold quantum secret sharing with authentication based on single photons","authors":"Jie Zhang, Jie Zhang, Sujuan Qin, Zhengping Jin","doi":"10.1007/s11128-025-04672-2","DOIUrl":null,"url":null,"abstract":"<div><p>Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (<i>t</i>, <i>n</i>) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (<i>n</i>, <i>n</i>) scheme. However, most (<i>t</i>, <i>n</i>) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (<i>t</i>, <i>n</i>) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (<i>t</i>, <i>n</i>) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (<i>t</i>, <i>n</i>) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused. \n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04672-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Secret sharing has become a important cryptographic primitive and been widely used. And quantum secret sharing is a quantum approach to achieve secret sharing. The (t, n) threshold quantum secret sharing requires only t participants out of n to cooperate to recover the secret, which is more flexible than the (n, n) scheme. However, most (t, n) threshold schemes basically involve quantum entanglement, and the preparation of entangled states as well as entanglement swapping are relatively complex. In this paper, we propose a (t, n) threshold quantum secret sharing scheme with authentication by using the Lagrange interpolation polynomial based on single photons. Unlike other (t, n) threshold schemes, it does not involve entangled states or entanglement swapping. And the distributor authenticate the participants without revealing the full identity key. In addition, secret sharing is based on Lagrange interpolation polynomial implementation, allowing any t participants to recover the secret. Analysis shows that the scheme can resist external eavesdroppers and dishonest participants. Compared with other schemes, this scheme has the following advantages: (1) it is easy to implement; (2) the (t, n) threshold scheme increases the flexibility of the scheme; (3) the identity key can be reused.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.