Versatile Features of an Antibody Mimetic Peptide and Its Variants

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Peptide Science Pub Date : 2025-02-17 DOI:10.1002/psc.70005
Simon Dolles, Simon Leukel, Sabrina Gensberger-Reigl, Anette Rohrhofer, Lena Rauch-Wirth, Kübra Kaygisiz, Christopher V. Synatschke, Jan Münch, Barbara Schmidt, Monika Pischetsrieder, Jutta Eichler
{"title":"Versatile Features of an Antibody Mimetic Peptide and Its Variants","authors":"Simon Dolles,&nbsp;Simon Leukel,&nbsp;Sabrina Gensberger-Reigl,&nbsp;Anette Rohrhofer,&nbsp;Lena Rauch-Wirth,&nbsp;Kübra Kaygisiz,&nbsp;Christopher V. Synatschke,&nbsp;Jan Münch,&nbsp;Barbara Schmidt,&nbsp;Monika Pischetsrieder,&nbsp;Jutta Eichler","doi":"10.1002/psc.70005","DOIUrl":null,"url":null,"abstract":"<p>Antibody mimetic peptides have evolved as versatile tools for biomedical applications, based on their ability to interfere with protein–protein interactions. We had previously designed a functional mimic of the broadly neutralizing HIV-1 antibody b12 that recognizes the CD4 binding site of the HIV-1 envelope glycoprotein gp120. The molecular details of the interaction of a linear variant of this peptide (H1H3s) with gp120 have now been characterized through cross-linking mass spectrometry, confirming the proposed involvement of the CD4 binding site of gp120 in the interaction. In addition, a variant of the b12 mimetic peptide composed mostly of D-amino acids was shown to be stable towards proteolytic degradation, while the binding and HIV-1 neutralizing properties were largely preserved. Furthermore, a peptide variant in which aspartate residues were replaced with lysine was shown to strongly enhance infection of cells with HIV-1 and GALV glycoprotein pseudotyped viral vectors, respectively, introducing this peptide as a tool to facilitate retroviral gene transfer. Collectively, the presented results highlight the versatile potential therapeutic and gene transfer applications of H1H3s and its variants in particular, as well as antibody mimetic peptides in general.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibody mimetic peptides have evolved as versatile tools for biomedical applications, based on their ability to interfere with protein–protein interactions. We had previously designed a functional mimic of the broadly neutralizing HIV-1 antibody b12 that recognizes the CD4 binding site of the HIV-1 envelope glycoprotein gp120. The molecular details of the interaction of a linear variant of this peptide (H1H3s) with gp120 have now been characterized through cross-linking mass spectrometry, confirming the proposed involvement of the CD4 binding site of gp120 in the interaction. In addition, a variant of the b12 mimetic peptide composed mostly of D-amino acids was shown to be stable towards proteolytic degradation, while the binding and HIV-1 neutralizing properties were largely preserved. Furthermore, a peptide variant in which aspartate residues were replaced with lysine was shown to strongly enhance infection of cells with HIV-1 and GALV glycoprotein pseudotyped viral vectors, respectively, introducing this peptide as a tool to facilitate retroviral gene transfer. Collectively, the presented results highlight the versatile potential therapeutic and gene transfer applications of H1H3s and its variants in particular, as well as antibody mimetic peptides in general.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
期刊最新文献
Cancer-Targeting Peptides Functionalized With Polyarginine Enables GRP78-Dependent Cell Uptake and siRNA Delivery Within the DU145 Prostate Cancer Cells Versatile Features of an Antibody Mimetic Peptide and Its Variants IAMPDB: A Knowledgebase of Manually Curated Insects-Derived Antimicrobial Peptides Regulatory Guidelines for the Analysis of Therapeutic Peptides and Proteins Synthesis of Anabaenopeptins With a Strategic Eye Toward N-Terminal Sequence Diversity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1