Joe P. Woodman, Stefan J. G. Vriend, Frank Adriaensen, Elena Álvarez, Alexander Artemyev, Emilio Barba, Malcolm D. Burgess, Samuel P. Caro, Laure Cauchard, Anne Charmantier, Ella F. Cole, Niels Dingemanse, Blandine Doligez, Tapio Eeva, Simon R. Evans, Arnaud Grégoire, Marcel Lambrechts, Agu Leivits, András Liker, Erik Matthysen, Markku Orell, John S. Park, Seppo Rytkönen, Juan Carlos Senar, Gábor Seress, Marta Szulkin, Kees van Oers, Emma Vatka, Marcel E. Visser, Josh A. Firth, Ben C. Sheldon
{"title":"Continent-Wide Drivers of Spatial Synchrony in Breeding Demographic Structure Across Wild Great Tit Populations","authors":"Joe P. Woodman, Stefan J. G. Vriend, Frank Adriaensen, Elena Álvarez, Alexander Artemyev, Emilio Barba, Malcolm D. Burgess, Samuel P. Caro, Laure Cauchard, Anne Charmantier, Ella F. Cole, Niels Dingemanse, Blandine Doligez, Tapio Eeva, Simon R. Evans, Arnaud Grégoire, Marcel Lambrechts, Agu Leivits, András Liker, Erik Matthysen, Markku Orell, John S. Park, Seppo Rytkönen, Juan Carlos Senar, Gábor Seress, Marta Szulkin, Kees van Oers, Emma Vatka, Marcel E. Visser, Josh A. Firth, Ben C. Sheldon","doi":"10.1111/ele.70079","DOIUrl":null,"url":null,"abstract":"<p>Variation in age structure influences population dynamics, yet we have limited understanding of the spatial scale at which its fluctuations are synchronised between populations. Using 32 great tit populations, spanning 4° W–33° E and 35°–65° N involving > 130,000 birds across 67 years, we quantify spatial synchrony in breeding demographic structure (subadult vs. adult breeders) and its drivers. We show that larger clutch sizes, colder winters, and larger beech crops lead to younger populations. We report distance-dependent synchrony of demographic structure, maintained at approximately 650 km. Despite covariation with demographic structure, we do not find evidence for environmental variables influencing the scale of synchrony, except for beech masting. We suggest that local ecological and density-dependent dynamics impact how environmental variation interacts with demographic structure, influencing estimates of the environment's effect on synchrony. Our analyses demonstrate the operation of synchrony in demographic structure over large scales, with implications for age-dependent demography in populations.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 2","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70079","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Variation in age structure influences population dynamics, yet we have limited understanding of the spatial scale at which its fluctuations are synchronised between populations. Using 32 great tit populations, spanning 4° W–33° E and 35°–65° N involving > 130,000 birds across 67 years, we quantify spatial synchrony in breeding demographic structure (subadult vs. adult breeders) and its drivers. We show that larger clutch sizes, colder winters, and larger beech crops lead to younger populations. We report distance-dependent synchrony of demographic structure, maintained at approximately 650 km. Despite covariation with demographic structure, we do not find evidence for environmental variables influencing the scale of synchrony, except for beech masting. We suggest that local ecological and density-dependent dynamics impact how environmental variation interacts with demographic structure, influencing estimates of the environment's effect on synchrony. Our analyses demonstrate the operation of synchrony in demographic structure over large scales, with implications for age-dependent demography in populations.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.