Global Variation in Zooplankton Niche Divergence Across Ocean Basins

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2025-02-20 DOI:10.1111/ele.70089
Niall McGinty, Andrew Irwin
{"title":"Global Variation in Zooplankton Niche Divergence Across Ocean Basins","authors":"Niall McGinty,&nbsp;Andrew Irwin","doi":"10.1111/ele.70089","DOIUrl":null,"url":null,"abstract":"<p>Modelling responses to climate change assumes zooplankton populations remain similar over time with little adaptation (niche conservatism). Oceanic barriers, genetic, phenotypic variation and species interactions in cosmopolitan species could drive niche divergence within species. We assess niche divergence among 223 globally distributed species across the seven main ocean basins. There were 357 diverged niches out of 828 ocean basin comparisons. The proportion of diverged niches varied both across and within phyla. <i>Copepoda</i> (156 of 223 species) were used to test for niche divergence between same-species populations across different environmental gradients. Global niche divergence was found to be more likely for species in colder temperatures and nearshore environments. Opposing temperature responses were found for four comparisons, which may relate to the different connectivity patterns between them. This study demonstrates adaptive potential across environmental-niche gradients, which must be considered when modelling population responses to climate change.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 2","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70089","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Modelling responses to climate change assumes zooplankton populations remain similar over time with little adaptation (niche conservatism). Oceanic barriers, genetic, phenotypic variation and species interactions in cosmopolitan species could drive niche divergence within species. We assess niche divergence among 223 globally distributed species across the seven main ocean basins. There were 357 diverged niches out of 828 ocean basin comparisons. The proportion of diverged niches varied both across and within phyla. Copepoda (156 of 223 species) were used to test for niche divergence between same-species populations across different environmental gradients. Global niche divergence was found to be more likely for species in colder temperatures and nearshore environments. Opposing temperature responses were found for four comparisons, which may relate to the different connectivity patterns between them. This study demonstrates adaptive potential across environmental-niche gradients, which must be considered when modelling population responses to climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Adaptive Evolution of Freezing Tolerance in Oaks Is Key to Their Dominance in North America Warming During Different Life Stages has Distinct Impacts on Host Resistance Ecology and Evolution A Mechanistic Approach to Animal Dispersal—Quantifying Energetics and Maximum Distances Global Variation in Zooplankton Niche Divergence Across Ocean Basins Biodiversity Patterns Redefined in Environmental Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1