miR-372-3p represses hepatic stellate cell activation via the RhoC/ROCK pathway.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cytotechnology Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI:10.1007/s10616-025-00715-9
Shiyu Ou, Xiaoling Tang, Zhongzhuan Li, Rong Ouyang, Yuan Lei, Gang Chen, Ling Du
{"title":"miR-372-3p represses hepatic stellate cell activation via the RhoC/ROCK pathway.","authors":"Shiyu Ou, Xiaoling Tang, Zhongzhuan Li, Rong Ouyang, Yuan Lei, Gang Chen, Ling Du","doi":"10.1007/s10616-025-00715-9","DOIUrl":null,"url":null,"abstract":"<p><p>The study was undertaken to determine the mechanism of miR-372-3p activating hepatic stellate cell (HSC). Transforming growth factor-β1 (TGF-β1) induced LX-2 cells were transfected with miR-372-3p mimics and/or RhoC overexpression vector (oe-RhoC), after which the miR-372-3 and RhoC expressions were detected and the biological functions of transfected cells were assessed. The relation between miR-372-3p and RhoC predicted online was validated using the dual-luciferase assay. Protein level of Collagen I (COL I), α-smooth muscle actin (α-SMA), and key proteins in the RhoC/ROCK pathway were determined using western blot. Activated LX-2 cells had decreased miR-372-3p and increased RhoC expression. Overexpression of miR-372-3p led to inhibited LX-2 cell proliferation, accelerated apoptosis, and decreased protein level of COL I and α-SMA, while such an expression pattern can be partially reversed by RhoC overexpression. miR-372-3p can bind and target RhoC expression. miR-372-3p inhibited RhoC expression to block the activation of the Rho/ROCK pathway and thus mediate LX-2 cell proliferation and apoptosis. miR-372-3p mediated RhoC/ROCK pathway to inhibit HSC activation.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 2","pages":"60"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828770/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00715-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study was undertaken to determine the mechanism of miR-372-3p activating hepatic stellate cell (HSC). Transforming growth factor-β1 (TGF-β1) induced LX-2 cells were transfected with miR-372-3p mimics and/or RhoC overexpression vector (oe-RhoC), after which the miR-372-3 and RhoC expressions were detected and the biological functions of transfected cells were assessed. The relation between miR-372-3p and RhoC predicted online was validated using the dual-luciferase assay. Protein level of Collagen I (COL I), α-smooth muscle actin (α-SMA), and key proteins in the RhoC/ROCK pathway were determined using western blot. Activated LX-2 cells had decreased miR-372-3p and increased RhoC expression. Overexpression of miR-372-3p led to inhibited LX-2 cell proliferation, accelerated apoptosis, and decreased protein level of COL I and α-SMA, while such an expression pattern can be partially reversed by RhoC overexpression. miR-372-3p can bind and target RhoC expression. miR-372-3p inhibited RhoC expression to block the activation of the Rho/ROCK pathway and thus mediate LX-2 cell proliferation and apoptosis. miR-372-3p mediated RhoC/ROCK pathway to inhibit HSC activation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
期刊最新文献
AKT activation participates in Fascin-1-induced EMT in hepatoma cells. Expression and role of CTHRC1 in inflammatory bowel disease in children. Expression profiling of circular RNAs in sepsis-induced acute gastrointestinal injury: insights into potential biomarkers and mechanisms. FXYD6 is transcriptionally activated by KLF10 to suppress the aggressiveness of gastric cancer cells. BSP promotes skin wound healing by regulating the expression level of SCEL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1