Hao Xu, Longyuan Shi, Aashutosh Girish Boob, Wooyoung Park, Shih-I Tan, Vinh Gia Tran, John Carl Schultz, Huimin Zhao
{"title":"Discovery, characterization, and application of chromosomal integration sites for stable heterologous gene expression in Rhodotorula toruloides.","authors":"Hao Xu, Longyuan Shi, Aashutosh Girish Boob, Wooyoung Park, Shih-I Tan, Vinh Gia Tran, John Carl Schultz, Huimin Zhao","doi":"10.1016/j.ymben.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Rhodotorula toruloides is a non-model, oleaginous yeast uniquely suited to produce acetyl-CoA-derived chemicals. However, the lack of well-characterized genomic integration sites has impeded the metabolic engineering of this organism. Here we report a set of computationally predicted and experimentally validated chromosomal integration sites in R. toruloides. We first implemented an in silico platform by integrating essential gene information and transcriptomic data to identify candidate sites that meet stringent criteria. We then conducted a full experimental characterization of these sites, assessing integration efficiency, gene expression levels, impact on cell growth, and long-term expression stability. Among the identified sites, 12 exhibited integration efficiencies of 50% or higher, making them sufficient for most metabolic engineering applications. Using selected high-efficiency sites, we achieved simultaneous double and triple integrations and efficiently integrated long functional pathways (up to 14.7 kb). Additionally, we developed a new inducible marker recycling system that allows multiple rounds of integration at our characterized sites. We validated this system by performing five sequential rounds of GFP integration and three sequential rounds of MaFAR integration for fatty alcohol production, demonstrating, for the first time, precise gene copy number tuning in R. toruloides. These characterized integration sites should significantly advance metabolic engineering efforts and future genetic tool development in R. toruloides.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.02.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhodotorula toruloides is a non-model, oleaginous yeast uniquely suited to produce acetyl-CoA-derived chemicals. However, the lack of well-characterized genomic integration sites has impeded the metabolic engineering of this organism. Here we report a set of computationally predicted and experimentally validated chromosomal integration sites in R. toruloides. We first implemented an in silico platform by integrating essential gene information and transcriptomic data to identify candidate sites that meet stringent criteria. We then conducted a full experimental characterization of these sites, assessing integration efficiency, gene expression levels, impact on cell growth, and long-term expression stability. Among the identified sites, 12 exhibited integration efficiencies of 50% or higher, making them sufficient for most metabolic engineering applications. Using selected high-efficiency sites, we achieved simultaneous double and triple integrations and efficiently integrated long functional pathways (up to 14.7 kb). Additionally, we developed a new inducible marker recycling system that allows multiple rounds of integration at our characterized sites. We validated this system by performing five sequential rounds of GFP integration and three sequential rounds of MaFAR integration for fatty alcohol production, demonstrating, for the first time, precise gene copy number tuning in R. toruloides. These characterized integration sites should significantly advance metabolic engineering efforts and future genetic tool development in R. toruloides.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.