Discovery, characterization, and application of chromosomal integration sites for stable heterologous gene expression in Rhodotorula toruloides.

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2025-02-14 DOI:10.1016/j.ymben.2025.02.004
Hao Xu, Longyuan Shi, Aashutosh Girish Boob, Wooyoung Park, Shih-I Tan, Vinh Gia Tran, John Carl Schultz, Huimin Zhao
{"title":"Discovery, characterization, and application of chromosomal integration sites for stable heterologous gene expression in Rhodotorula toruloides.","authors":"Hao Xu, Longyuan Shi, Aashutosh Girish Boob, Wooyoung Park, Shih-I Tan, Vinh Gia Tran, John Carl Schultz, Huimin Zhao","doi":"10.1016/j.ymben.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Rhodotorula toruloides is a non-model, oleaginous yeast uniquely suited to produce acetyl-CoA-derived chemicals. However, the lack of well-characterized genomic integration sites has impeded the metabolic engineering of this organism. Here we report a set of computationally predicted and experimentally validated chromosomal integration sites in R. toruloides. We first implemented an in silico platform by integrating essential gene information and transcriptomic data to identify candidate sites that meet stringent criteria. We then conducted a full experimental characterization of these sites, assessing integration efficiency, gene expression levels, impact on cell growth, and long-term expression stability. Among the identified sites, 12 exhibited integration efficiencies of 50% or higher, making them sufficient for most metabolic engineering applications. Using selected high-efficiency sites, we achieved simultaneous double and triple integrations and efficiently integrated long functional pathways (up to 14.7 kb). Additionally, we developed a new inducible marker recycling system that allows multiple rounds of integration at our characterized sites. We validated this system by performing five sequential rounds of GFP integration and three sequential rounds of MaFAR integration for fatty alcohol production, demonstrating, for the first time, precise gene copy number tuning in R. toruloides. These characterized integration sites should significantly advance metabolic engineering efforts and future genetic tool development in R. toruloides.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2025.02.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhodotorula toruloides is a non-model, oleaginous yeast uniquely suited to produce acetyl-CoA-derived chemicals. However, the lack of well-characterized genomic integration sites has impeded the metabolic engineering of this organism. Here we report a set of computationally predicted and experimentally validated chromosomal integration sites in R. toruloides. We first implemented an in silico platform by integrating essential gene information and transcriptomic data to identify candidate sites that meet stringent criteria. We then conducted a full experimental characterization of these sites, assessing integration efficiency, gene expression levels, impact on cell growth, and long-term expression stability. Among the identified sites, 12 exhibited integration efficiencies of 50% or higher, making them sufficient for most metabolic engineering applications. Using selected high-efficiency sites, we achieved simultaneous double and triple integrations and efficiently integrated long functional pathways (up to 14.7 kb). Additionally, we developed a new inducible marker recycling system that allows multiple rounds of integration at our characterized sites. We validated this system by performing five sequential rounds of GFP integration and three sequential rounds of MaFAR integration for fatty alcohol production, demonstrating, for the first time, precise gene copy number tuning in R. toruloides. These characterized integration sites should significantly advance metabolic engineering efforts and future genetic tool development in R. toruloides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Discovery, characterization, and application of chromosomal integration sites for stable heterologous gene expression in Rhodotorula toruloides. Issatchenkia orientalis as a platform organism for cost-effective production of organic acids Unlocking the potential of Shewanella in metabolic engineering: Current status, challenges, and opportunities Metabolic division engineering of Escherichia coli consortia for de novo biosynthesis of flavonoids and flavonoid glycosides. Prenol production in a microbial host via the “Repass” Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1