Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0146
Wenxin Lu, Li Li, Ruyi Wang, Yanting Wu, Yao Chen, Bowen Tan, Zhihe Zhao, Maling Gou, Yu Li
{"title":"Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair.","authors":"Wenxin Lu, Li Li, Ruyi Wang, Yanting Wu, Yao Chen, Bowen Tan, Zhihe Zhao, Maling Gou, Yu Li","doi":"10.34133/bmr.0146","DOIUrl":null,"url":null,"abstract":"<p><p>Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29<sup>+</sup> and CD90<sup>+</sup> stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0146"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29+ and CD90+ stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair. Lipid Nanoparticle Delivery System for Normalization of Tumor Microenvironment and Tumor Vascular Structure. MXene-Derived Multifunctional Biomaterials: New Opportunities for Wound Healing. Effect of Bioactive Glass into Mineral Trioxide Aggregate on the Biocompatibility and Mineralization Potential of Dental Pulp Stem Cells. A Mechanically Stimulated Co-culture in 3-Dimensional Composite Scaffolds Promotes Osteogenic and Anti-osteoclastogenic Activity and M2 Macrophage Polarization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1