Wenxin Lu, Li Li, Ruyi Wang, Yanting Wu, Yao Chen, Bowen Tan, Zhihe Zhao, Maling Gou, Yu Li
{"title":"Three-Dimensional Printed Cell-Adaptable Nanocolloidal Hydrogel Induces Endogenous Osteogenesis for Bone Repair.","authors":"Wenxin Lu, Li Li, Ruyi Wang, Yanting Wu, Yao Chen, Bowen Tan, Zhihe Zhao, Maling Gou, Yu Li","doi":"10.34133/bmr.0146","DOIUrl":null,"url":null,"abstract":"<p><p>Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29<sup>+</sup> and CD90<sup>+</sup> stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0146"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11825971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Repairing critical bone defects remains a formidable challenge in regenerative medicine. Scaffolds that can fill defects and facilitate bone regeneration have garnered considerable attention. However, scaffolds struggle to provide an ideal microenvironment for cell growth and differentiation at the interior of the bone defect sites. The scaffold's structure must meet specific requirements to support endogenous bone regeneration. Here, we introduce a novel 3D-printed nanocolloidal gelatin methacryloyl (GelMA) hydrogel, namely, the nG hydrogel, that was derived from the self-assembly of GelMA in the presence of Pluronics F68, emphasizing its osteoinductive capability conferred solely by the specific nanocolloidal structure. The nG hydrogel, exhibiting remarkable pore connectivity and cell-adaptable microscopic structure, induced the infiltration and migration of rat bone mesenchymal stem cells (rBMSCs) into the hydrogel with a large spreading area in vitro. Moreover, the nG hydrogel with interconnected nanospheres promoted the osteogenic differentiation of rBMSCs, leading to up-regulated expression of ALP, RUNX2, COL-1, and OCN, as well as augmented formation of calcium nodules. In the critical-sized rat calvarial defect model, the nG hydrogel demonstrated improved repair of bone defects, with enhanced recruitment of endogenous CD29+ and CD90+ stem cells and increased bone regeneration, as indicated by significantly higher bone mineral density (BMD) in vivo. Mechanistically, the integrin β1/focal adhesion kinase (FAK) mechanotransduction signaling pathway was up-regulated in the nG hydrogel group both in vitro and in vivo, which may partially account for its pronounced osteoinductive capability. In conclusion, the cell-adaptable nG hydrogel shows great potential as a near-future clinical translational strategy for the customized repair of critical-sized bone defects.