Aerobic Exercise and Metformin: A Dual Approach to Enhancing Glycemic Maintenance in Type 2 Diabetes Mellitus.

Chonnam medical journal Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI:10.4068/cmj.2025.61.1.9
Zahra Eslami, Gholamreza Roshandel, Seyed Javad Mirghani
{"title":"Aerobic Exercise and Metformin: A Dual Approach to Enhancing Glycemic Maintenance in Type 2 Diabetes Mellitus.","authors":"Zahra Eslami, Gholamreza Roshandel, Seyed Javad Mirghani","doi":"10.4068/cmj.2025.61.1.9","DOIUrl":null,"url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition characterized by elevated glucose levels followed by deficiency in insulin secretion. Metformin notably decreased the incidence of T2DM by 31% and it exerts its effects through various signaling pathways. Databases searched included PubMed, Google Scholar, and Scopus from 2000 to 2024. One of the primary mechanisms involves AMPK activation which causes reduced lipogenesis and improved fatty acid oxidation in the liver and muscles. Key molecules affected by metformin include acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein 1c (SREBP-1c), both involved in lipid synthesis regulation. Aerobic exercise has also emerged as a crucial component in managing T2DM due to its improved effects on hyperglycemia and insulin sensitivity. Key signaling pathways affected in T2DM include the PI3K/Akt, AMP-activated protein kinase (AMPK), and MAPK/ERK pathways which play essential roles in regulating glucose homeostasis, glycogenesis, and insulin secretion. When comparing the mechanisms and efficacy of aerobic exercise and metformin, it becomes evident that aerobic exercise primarily enhances physical fitness and metabolic function, while metformin exerts its effects through biochemical pathways involving AMPK activation. Aerobic exercise and metformin are effective for managing T2DM, though they operate through different mechanisms. Regular aerobic exercise improves insulin sensitivity, enhances cardiovascular health, and promotes weight loss, while metformin primarily decreases hepatic gluconeogenesis and enhances insulin secretion. Understanding the intricate signaling pathways affected by metformin and aerobic exercise provides valuable insights into its mechanisms of action and clinical implications for treating diabetic patients effectively.</p>","PeriodicalId":94372,"journal":{"name":"Chonnam medical journal","volume":"61 1","pages":"9-18"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11821983/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chonnam medical journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4068/cmj.2025.61.1.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Type 2 diabetes mellitus (T2DM) is a widespread metabolic condition characterized by elevated glucose levels followed by deficiency in insulin secretion. Metformin notably decreased the incidence of T2DM by 31% and it exerts its effects through various signaling pathways. Databases searched included PubMed, Google Scholar, and Scopus from 2000 to 2024. One of the primary mechanisms involves AMPK activation which causes reduced lipogenesis and improved fatty acid oxidation in the liver and muscles. Key molecules affected by metformin include acetyl-CoA carboxylase (ACC) and sterol regulatory element-binding protein 1c (SREBP-1c), both involved in lipid synthesis regulation. Aerobic exercise has also emerged as a crucial component in managing T2DM due to its improved effects on hyperglycemia and insulin sensitivity. Key signaling pathways affected in T2DM include the PI3K/Akt, AMP-activated protein kinase (AMPK), and MAPK/ERK pathways which play essential roles in regulating glucose homeostasis, glycogenesis, and insulin secretion. When comparing the mechanisms and efficacy of aerobic exercise and metformin, it becomes evident that aerobic exercise primarily enhances physical fitness and metabolic function, while metformin exerts its effects through biochemical pathways involving AMPK activation. Aerobic exercise and metformin are effective for managing T2DM, though they operate through different mechanisms. Regular aerobic exercise improves insulin sensitivity, enhances cardiovascular health, and promotes weight loss, while metformin primarily decreases hepatic gluconeogenesis and enhances insulin secretion. Understanding the intricate signaling pathways affected by metformin and aerobic exercise provides valuable insights into its mechanisms of action and clinical implications for treating diabetic patients effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Retrospective Cohort Study Investigating the Effect of Intraovarian Platelet-Rich Plasma Therapy on the Oxidative State of Follicular Fluid in Women with Diminished Ovarian Reserve. Aerobic Exercise and Metformin: A Dual Approach to Enhancing Glycemic Maintenance in Type 2 Diabetes Mellitus. Biopharmaceutical Analysis by HPLC: Practices and Challenges. Changes in Candidemia during the COVID-19 Pandemic: Species Distribution, Antifungal Susceptibility, Initial Antifungal Usage, and Mortality Trends in Two Korean Tertiary Care Hospitals. Highly Mobile and Pedunculated Left Ventricular Myxoma in a 5-Year-Old Child.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1