Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential.

Ankita Parmanik, Anindya Bose, Lipsa Leena Panigrahi, Rudra Narayan Sahoo, Amit Kumar Nayak
{"title":"Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential.","authors":"Ankita Parmanik, Anindya Bose, Lipsa Leena Panigrahi, Rudra Narayan Sahoo, Amit Kumar Nayak","doi":"10.2174/0115672018263115250212075106","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Superparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.</p><p><strong>Objective: </strong>The objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONsincorporated nanohydrogel for wound healing potential.</p><p><strong>Methods: </strong>Synthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, etc. The antibacterial effects of G-SPIONs were evaluated against S. epidermidis, S. aureus, and E. coli, as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosanbased hydrogel (ChiG-SPIONs) to assess their wound healing potential using the in vivo rat model.</p><p><strong>Results: </strong>The synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The in vivo wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of reepithelialization with regeneration of blood vessels and hair follicles.</p><p><strong>Conclusion: </strong>The results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018263115250212075106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Superparamagnetic iron oxide nanoparticles (SPIONs) with a specific size range of 15-70 nm are usually considered nontoxic substances with superior antibacterial activity, making them strong candidates for wound dressing applications. Although SPIONs have significant antibacterial activity, their ability to treat infected wounds still needs to be explored.

Objective: The objective of the present study was to synthesize antibacterial SPIONs (G-SPIONs) using aqueous garlic extract as a bioreducing agent and evaluate the synthesized G-SPIONsincorporated nanohydrogel for wound healing potential.

Methods: Synthesized G-SPIONs were characterized by SEM, zeta potential, VSM, FTIR, etc. The antibacterial effects of G-SPIONs were evaluated against S. epidermidis, S. aureus, and E. coli, as compared to garlic extract. The synthesized G-SPIONs were further incorporated into the chitosanbased hydrogel (ChiG-SPIONs) to assess their wound healing potential using the in vivo rat model.

Results: The synthesized G-SPIONs had a positive surface charge of +3.82 mV and were spherical, with sizes ranging between 20-80 nm. Additionally, their hemo-biocompatible nature was confirmed by hemolysis assay. The magnetic nature of synthesized G-SPIONs was investigated using a vibrating sample magnetometer, and the saturation magnetization (Ms) was found to be 53.793emu/g. The in vivo wound healing study involving rats revealed a wound contraction rate of around 95% with improved skin regeneration. The histopathological examination demonstrated a faster rate of reepithelialization with regeneration of blood vessels and hair follicles.

Conclusion: The results demonstrated that the developed ChiG-SPIONs could be a novel and efficient nanohydrogel dressing material for the effective management of wound infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Garlic Extract-Mediated SPIONs-Incorporated Nanohydrogel for Enhanced Wound Healing Potential. Fabrication and Evaluation of Hyaluronic Acid Coated Albumin Nanoparticles for Delivery of Gemcitabine. mRNA Vaccines: Unlocking Potential, Exploring Applications, and Envisioning Future Horizons. Recent Advances in Nanotherapeutics and Theranostics for Squamous Cell Carcinoma: A Comprehensive Review. Exploring the Physicochemical Compatibility of Minoxidil in Combination with Different Active Pharmaceutical Ingredients in Ready-to-use Vehicles for Alopecia Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1