{"title":"An $$L_2$$ regularization reduced quadratic surface support vector machine model","authors":"Jiguang Wang, Fangfang Guo, Jie Shen","doi":"10.1007/s10878-024-01250-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a reduced quadratic surface support vector machine (RQSSVM) classification model is proposed and solved using the augmented Lagrange method. The new model can effectively handle nonlinearly separable data without kernel function selection and parameter tuning due to its quadratic surface segmentation facility. Meanwhile, the maximum margin term is replaced by an <span>\\(L_2\\)</span> regularization term and the Hessian of the quadratic surface is reduced to a diagonal matrix. This simplification significantly reduces the number of decision variables and improves computational efficiency. The <span>\\(L_1\\)</span> loss function is used to transform the problem into a convex composite optimization problem. Then the transformed problem is solved by the Augmented Lagrange method and the non-smoothness of the subproblems is handled by the semi-smooth Newton algorithm. Numerical experiments on artificial and public benchmark datasets show that RQSSVM model not only inherits the superior performance of quadratic surface SVM for segmenting nonlinear surfaces, but also significantly improves the segmentation speed and efficiency.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-024-01250-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a reduced quadratic surface support vector machine (RQSSVM) classification model is proposed and solved using the augmented Lagrange method. The new model can effectively handle nonlinearly separable data without kernel function selection and parameter tuning due to its quadratic surface segmentation facility. Meanwhile, the maximum margin term is replaced by an \(L_2\) regularization term and the Hessian of the quadratic surface is reduced to a diagonal matrix. This simplification significantly reduces the number of decision variables and improves computational efficiency. The \(L_1\) loss function is used to transform the problem into a convex composite optimization problem. Then the transformed problem is solved by the Augmented Lagrange method and the non-smoothness of the subproblems is handled by the semi-smooth Newton algorithm. Numerical experiments on artificial and public benchmark datasets show that RQSSVM model not only inherits the superior performance of quadratic surface SVM for segmenting nonlinear surfaces, but also significantly improves the segmentation speed and efficiency.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.