Energy Transition in Tissue Paper Industry Through Solid Biomass Combustion and Gasification: techno-economic potential and limitations

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2025-02-18 DOI:10.1016/j.jclepro.2025.145014
Alessio Ciambellotti, Arianna Baldinelli, Stefano Frigo, Stefano Pecchia, Umberto Desideri
{"title":"Energy Transition in Tissue Paper Industry Through Solid Biomass Combustion and Gasification: techno-economic potential and limitations","authors":"Alessio Ciambellotti, Arianna Baldinelli, Stefano Frigo, Stefano Pecchia, Umberto Desideri","doi":"10.1016/j.jclepro.2025.145014","DOIUrl":null,"url":null,"abstract":"The pulp and paper industry is a hard-to-abate sector still largely relying on fossil fuels. Tissue paper manufacturing necessitates c.a. 1300 kWh<sub>th</sub>/t<sub>paper</sub>(up to 500°C) and 800 kWh<sub>e</sub>/t<sub>paper</sub> to maintain high productivity performance. Within this framework, this study addresses the use of bioenergy in the tissue paper manufacturing sector, where ready-to-use cellulose is imported and there is no autochthonous biowaste availability like in Kraft-based pulping processes. Assuming the adoption of conventional and reliable systems (biomass boilers, biomass gasifiers and cogeneration systems), this paper examines both the potential environmental benefits and the techno-economical challenges of their implementation in basic layouts and in cogeneration solutions. The results indicate that a fully biomass-based setup, capable of eliminating fossil fuel use through self-generated electricity, can reduce energy-related CO<sub>2</sub> emissions by 80%. However, the viability of this solution is constrained by the substantial biomass requirement (c.a. 57 kt/y), necessitating significant storage and handling capacities. Considering biomass-based solutions as a partial alternative appears more viable, due to the balance between construction costs, logistical demand, and natural gas consumption reduction. These solutions achieve CO<sub>2</sub> emissions reductions ranging from 12% to 45%, using only 13% to 33% of the biomass required for a full system replacement. The impact of the innovative layouts investigated in this study is projected on the district of Lucca, one among the main tissue paper district at EU level (18% of EU tissue paper output). The replacement of natural gas with bioenergy could achieve -227 kt<sub>CO2</sub>/y, but this approach would lead to an non sustainable forestry wood biomass consumption (estimated around 93% of the local potential). Moreover, reasonable payback time requires biomass costs to range between 22 and 31 €/MWh which is challenging in Italy but may be viable in Northern European countries where biomass is cheaper and bioenergy exploitation is more common. Therefore, the economic analysis indicates significant feasibility risks in introducing bioenergy to reduce natural gas for use in heating systems. Nonetheless, in the short term, this solution is competitive compared to other decarbonization strategies, including direct electrification.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"13 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.145014","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The pulp and paper industry is a hard-to-abate sector still largely relying on fossil fuels. Tissue paper manufacturing necessitates c.a. 1300 kWhth/tpaper(up to 500°C) and 800 kWhe/tpaper to maintain high productivity performance. Within this framework, this study addresses the use of bioenergy in the tissue paper manufacturing sector, where ready-to-use cellulose is imported and there is no autochthonous biowaste availability like in Kraft-based pulping processes. Assuming the adoption of conventional and reliable systems (biomass boilers, biomass gasifiers and cogeneration systems), this paper examines both the potential environmental benefits and the techno-economical challenges of their implementation in basic layouts and in cogeneration solutions. The results indicate that a fully biomass-based setup, capable of eliminating fossil fuel use through self-generated electricity, can reduce energy-related CO2 emissions by 80%. However, the viability of this solution is constrained by the substantial biomass requirement (c.a. 57 kt/y), necessitating significant storage and handling capacities. Considering biomass-based solutions as a partial alternative appears more viable, due to the balance between construction costs, logistical demand, and natural gas consumption reduction. These solutions achieve CO2 emissions reductions ranging from 12% to 45%, using only 13% to 33% of the biomass required for a full system replacement. The impact of the innovative layouts investigated in this study is projected on the district of Lucca, one among the main tissue paper district at EU level (18% of EU tissue paper output). The replacement of natural gas with bioenergy could achieve -227 ktCO2/y, but this approach would lead to an non sustainable forestry wood biomass consumption (estimated around 93% of the local potential). Moreover, reasonable payback time requires biomass costs to range between 22 and 31 €/MWh which is challenging in Italy but may be viable in Northern European countries where biomass is cheaper and bioenergy exploitation is more common. Therefore, the economic analysis indicates significant feasibility risks in introducing bioenergy to reduce natural gas for use in heating systems. Nonetheless, in the short term, this solution is competitive compared to other decarbonization strategies, including direct electrification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Polyferric-titanium composite coagulants with hydrogen bond domain expansion effect for superior coagulation performance Prediction of Long-term Trends in Biomass Energy Development Suitability and Optimization of Feedstock Collection Layout Based on Deep Learning Algorithms Decision-making in structural type selection at the early design stage in terms of carbon emissions and cost – insights from case studies of port mooring facilities Sustainable Futures for Transformational Forestry Resource-based City: Linking Landscape Pattern and Administrative Policy European Green Deal Index: a new composite tool for monitoring European Union’s Green Deal strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1