Using artificial intelligence tools for data quality evaluation in the context of microplastic human health risk assessments

IF 10.3 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environment International Pub Date : 2025-02-17 DOI:10.1016/j.envint.2025.109341
Yanning Qiu, Svenja Mintenig, Margherita Barchiesi, Albert A. Koelmans
{"title":"Using artificial intelligence tools for data quality evaluation in the context of microplastic human health risk assessments","authors":"Yanning Qiu, Svenja Mintenig, Margherita Barchiesi, Albert A. Koelmans","doi":"10.1016/j.envint.2025.109341","DOIUrl":null,"url":null,"abstract":"Concerns about the negative impacts of microplastics on human health are increasing in society, while exposure and risk assessments require high-quality, reliable data. Although quality assurance and –control (QA/QC) frameworks exist to evaluate the reliability of data for these purposes, manually assessing studies by human is too time-consuming and prone to inconsistencies due to semantic ambiguities and evaluator bias. The rapid growth of microplastic studies makes manually screening of relevant data practically unfeasible. This study explores the potential of artificial intelligence (AI), specifically large language models (LLMs) such as OpenAI’s ChatGPT and Google’s Gemini, to streamline and standardize the QA/QC screening of data in microplastics research. We developed specific prompts based on previously published QA/QC criteria for the analysis of microplastics in drinking water and its sources, and used these to instruct AI tools to evaluate 73 studies published between 2011 and 2024. Our approach demonstrated the effectiveness of AI in extracting relevant information, interpreting the reliability of studies, and replicating human assessments. The findings indicate that AI-assisted assessments show promise in improving speed, consistency and applicability in QA/QC tasks, as well as in ranking studies or datasets based on their suitability for exposure and risk assessments. This groundbreaking application of LLMs in the environmental sciences suggests that AI can play a vital role in harmonizing microplastics risk assessments within regulatory frameworks and demonstrates how to meet the demands of an increasingly data-intensive application domain.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"18 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2025.109341","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Concerns about the negative impacts of microplastics on human health are increasing in society, while exposure and risk assessments require high-quality, reliable data. Although quality assurance and –control (QA/QC) frameworks exist to evaluate the reliability of data for these purposes, manually assessing studies by human is too time-consuming and prone to inconsistencies due to semantic ambiguities and evaluator bias. The rapid growth of microplastic studies makes manually screening of relevant data practically unfeasible. This study explores the potential of artificial intelligence (AI), specifically large language models (LLMs) such as OpenAI’s ChatGPT and Google’s Gemini, to streamline and standardize the QA/QC screening of data in microplastics research. We developed specific prompts based on previously published QA/QC criteria for the analysis of microplastics in drinking water and its sources, and used these to instruct AI tools to evaluate 73 studies published between 2011 and 2024. Our approach demonstrated the effectiveness of AI in extracting relevant information, interpreting the reliability of studies, and replicating human assessments. The findings indicate that AI-assisted assessments show promise in improving speed, consistency and applicability in QA/QC tasks, as well as in ranking studies or datasets based on their suitability for exposure and risk assessments. This groundbreaking application of LLMs in the environmental sciences suggests that AI can play a vital role in harmonizing microplastics risk assessments within regulatory frameworks and demonstrates how to meet the demands of an increasingly data-intensive application domain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environment International
Environment International 环境科学-环境科学
CiteScore
21.90
自引率
3.40%
发文量
734
审稿时长
2.8 months
期刊介绍: Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review. It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.
期刊最新文献
Association between confirmed COVID-19 cases at hospitals and SARS-CoV-2 levels in municipal wastewater during the pandemic and endemic phases Persistent organic pollutants and plasma MicroRNAs: A community-based profiling analysis Using artificial intelligence tools for data quality evaluation in the context of microplastic human health risk assessments Chemical risk assessment in food animals via physiologically based pharmacokinetic modeling − Part I: Veterinary drugs on human food safety assessment Exposure to nanoplastics exacerbates light pollution hazards to mammalian
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1