Zhiyuan Jiang, Zhi Chen, Xiujun Yu, Shuai Lu, Wenmin Xu, Bo Yu, Charlotte L. Stern, Shu-Yi Li, Yue Zhao, Xinzhi Liu, Yeqiang Han, Shuqi Chen, Kang Cai, Dengke Shen, Kaikai Ma, Xiaopeng Li, Aspen X.-Y. Chen
{"title":"Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels","authors":"Zhiyuan Jiang, Zhi Chen, Xiujun Yu, Shuai Lu, Wenmin Xu, Bo Yu, Charlotte L. Stern, Shu-Yi Li, Yue Zhao, Xinzhi Liu, Yeqiang Han, Shuqi Chen, Kang Cai, Dengke Shen, Kaikai Ma, Xiaopeng Li, Aspen X.-Y. Chen","doi":"10.1021/jacs.4c14123","DOIUrl":null,"url":null,"abstract":"Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag<sub>6</sub>L<sub>2</sub> helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag<sup>+</sup> cations. We discovered that the nanochannels exhibit either an <i>M</i> or a <i>P</i> helicity when the Ag<sup>+</sup> cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag<sup>+</sup> cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the <i>ortho</i> positions of the pyridinyl ligands. The tetracoordinated Ag<sup>+</sup> cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"49 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14123","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.