A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-18 DOI:10.1021/jacs.5c00837
Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang
{"title":"A Copper–Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction","authors":"Jiacheng Jayden Wang, Huong T. D. Bui, Xunlu Wang, Zhuoran Lv, Huashuai Hu, Shuyi Kong, Zhiqiang Wang, Lijia Liu, Wei Chen, Hui Bi, Minghui Yang, Tore Brinck, Jiacheng Wang, Fuqiang Huang","doi":"10.1021/jacs.5c00837","DOIUrl":null,"url":null,"abstract":"The electrocatalytic nitrite reduction (NO<sub>2</sub>RR) converts nitrogen-containing pollutants to high-value ammonia (NH<sub>3</sub>) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH<sub>3</sub> selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO<sub>2</sub><sup>–</sup>. It exhibits outstanding NO<sub>2</sub>RR performance with a Faradaic efficiency of ∼100% and an NH<sub>3</sub> yield of 22 mg h<sup>–1</sup> cm<sup>–2</sup>, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]<sup>2–</sup> could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO<sub>2</sub><sup>–</sup> to a [Cu–N–O–Zn] asymmetric configuration in Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN-NO<sub>2</sub><sup>–</sup>, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu<sub>0.8</sub>Zn<sub>0.2</sub>NCN cathode reaches 2000 mA cm<sup>–2</sup> at 2.36 V and remains fully operational at industrial-level 400 mA cm<sup>–2</sup> for &gt;140 h with a NH<sub>3</sub> production rate of ∼30 mg<sub>NH3</sub> h<sup>–1</sup> cm<sup>–2</sup>. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"177 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic nitrite reduction (NO2RR) converts nitrogen-containing pollutants to high-value ammonia (NH3) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH3 selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper–zinc cyanamide (Cu0.8Zn0.2NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO2. It exhibits outstanding NO2RR performance with a Faradaic efficiency of ∼100% and an NH3 yield of 22 mg h–1 cm–2, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu–Zn sites coordinated with linear polarized [NCN]2– could transform symmetric [Cu–O–N–O–Cu] in CuNCN-NO2 to a [Cu–N–O–Zn] asymmetric configuration in Cu0.8Zn0.2NCN-NO2, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu0.8Zn0.2NCN cathode reaches 2000 mA cm–2 at 2.36 V and remains fully operational at industrial-level 400 mA cm–2 for >140 h with a NH3 production rate of ∼30 mgNH3 h–1 cm–2. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Enantioselective Alkyl-Acyl Radical Cross-Coupling Enabled by Metallaphotoredox Catalysis. High-Spin Manganese(V) in an Active Center Analogue of the Oxygen-Evolving Complex. Intermolecular N-N Coupling of a Dinitrosyl Iron Complex Induced by Hydrogen Bond Donors in the Secondary Coordination Sphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1