Alexander Kmoch, Clay Taylor Harrison, Jeonghwan Choi, Evelyn Uuemaa
{"title":"Spatial autocorrelation in machine learning for modelling soil organic carbon","authors":"Alexander Kmoch, Clay Taylor Harrison, Jeonghwan Choi, Evelyn Uuemaa","doi":"10.1016/j.ecoinf.2025.103057","DOIUrl":null,"url":null,"abstract":"<div><div>Spatial autocorrelation, the relationship between nearby samples of a spatial random variable, is often overlooked in machine learning models, leading to biased results. This study compares various methods to account for spatial autocorrelation when predicting soil organic carbon (SOC) using random forest models. This kind of systematic comparison has not been done previously. Five models incorporating spatial structure were compared against baseline models with no added spatial components. Cross-validation showed slight improvements in accuracy for models considering spatial autocorrelation, while Shapley Additive Explanations confirmed the importance of spatial variables. However, no decrease in spatial autocorrelation of residuals was observed. Random Forest Spatial Interpolation emerged as the top performer in capturing spatial structure and improving model accuracy. Raster-based models exhibited enhanced prediction detail. The findings emphasize the value of incorporating spatial autocorrelation for better prediction of SOC with machine learning. Considerations such as the spatial distribution of predictions and computational complexity should help guide the selection of suitable approaches for specific spatial modelling tasks.</div></div>","PeriodicalId":51024,"journal":{"name":"Ecological Informatics","volume":"86 ","pages":"Article 103057"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Informatics","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574954125000664","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial autocorrelation, the relationship between nearby samples of a spatial random variable, is often overlooked in machine learning models, leading to biased results. This study compares various methods to account for spatial autocorrelation when predicting soil organic carbon (SOC) using random forest models. This kind of systematic comparison has not been done previously. Five models incorporating spatial structure were compared against baseline models with no added spatial components. Cross-validation showed slight improvements in accuracy for models considering spatial autocorrelation, while Shapley Additive Explanations confirmed the importance of spatial variables. However, no decrease in spatial autocorrelation of residuals was observed. Random Forest Spatial Interpolation emerged as the top performer in capturing spatial structure and improving model accuracy. Raster-based models exhibited enhanced prediction detail. The findings emphasize the value of incorporating spatial autocorrelation for better prediction of SOC with machine learning. Considerations such as the spatial distribution of predictions and computational complexity should help guide the selection of suitable approaches for specific spatial modelling tasks.
期刊介绍:
The journal Ecological Informatics is devoted to the publication of high quality, peer-reviewed articles on all aspects of computational ecology, data science and biogeography. The scope of the journal takes into account the data-intensive nature of ecology, the growing capacity of information technology to access, harness and leverage complex data as well as the critical need for informing sustainable management in view of global environmental and climate change.
The nature of the journal is interdisciplinary at the crossover between ecology and informatics. It focuses on novel concepts and techniques for image- and genome-based monitoring and interpretation, sensor- and multimedia-based data acquisition, internet-based data archiving and sharing, data assimilation, modelling and prediction of ecological data.