Association of perfluoroalkyl substance (PFAS) on vitamin D biomarkers in a highly exposed population of the Veneto Region in Italy

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2025-02-19 DOI:10.1016/j.chemosphere.2025.144230
Andrea Di Nisio , Luca De Toni , Cristina Canova , Mirko Berti , Achille Di Falco , Rinaldo Zolin , Anna Maria Bettega , Iva Sabovic , Alberto Ferlin , Carlo Foresta
{"title":"Association of perfluoroalkyl substance (PFAS) on vitamin D biomarkers in a highly exposed population of the Veneto Region in Italy","authors":"Andrea Di Nisio ,&nbsp;Luca De Toni ,&nbsp;Cristina Canova ,&nbsp;Mirko Berti ,&nbsp;Achille Di Falco ,&nbsp;Rinaldo Zolin ,&nbsp;Anna Maria Bettega ,&nbsp;Iva Sabovic ,&nbsp;Alberto Ferlin ,&nbsp;Carlo Foresta","doi":"10.1016/j.chemosphere.2025.144230","DOIUrl":null,"url":null,"abstract":"<div><div>Perfluoroalkyl substances (PFASs) raise concerns about their environmental accumulation. Experimental data have suggested that PFASs interfere with bone metabolism from the early stages of life. However, mechanisms underlying this association are unclear. The aim of this study was to evaluate the possible association between environmental exposure to PFAS and vitamin D (VitD), serum calcium and parathyroid hormone (PTH) levels in subjects residing in high-exposure area of the Veneto Region of Italy. In this cross-sectional observational study, 1174 subjects who previously adhered to the 2016–2018 Regional Surveillance Plan for plasma levels of PFASs were recalled in 2023 and evaluated for demographic, anthropometrics and blood analyses. Data on nutritional habits and VitD supplementation were obtained by a dedicated questionnaire. Serum concentrations of PFASs, calcium, 25-hydroxy-vitamin D (25OH-VitD) and PTH were determined from blood sampling. Perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the only three PFASs, of 12, quantifiable in at least 90% of the samples and considered for further analyses. Generalized additive models, using linear regression and smoothing thin plate splines, detected a positive association between serum calcium and all considered PFAS (PFOA: β = 0.03; CI 95% 0.01–0.06; PFOS: β = 0.06; CI 95% 0.02–0.09, PFHxS: β = 0.04; CI 95% 0.01–0.06). Estimated degrees of freedom (EDF) analysis showed the approximately linear association between serum calcium with PFOA (EDF = 1.89) and PFHxS (EDF = 1.21), but not for PFOS (EDF = 3.69). Differently, PFAS levels showed no association with either 25-hydroxy-vitamin D or PTH, except for ln-transformed 25OH-D and PFOS (β = 0.04; CI 95% 0.00–0.08). Stratified analyses confirmed the positive association between all considered PFAS and calcium in subjects not taking a VitD supplementation. Results show that high exposure levels to PFAS may interfere with calcium metabolism, independently of lifestyle and dietary factors. Further elucidation on the mechanisms underlying calcium homeostasis disruption, including multiple binding-equilibrium with serum albumin, remains to be addressed.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"374 ","pages":"Article 144230"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525001729","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Perfluoroalkyl substances (PFASs) raise concerns about their environmental accumulation. Experimental data have suggested that PFASs interfere with bone metabolism from the early stages of life. However, mechanisms underlying this association are unclear. The aim of this study was to evaluate the possible association between environmental exposure to PFAS and vitamin D (VitD), serum calcium and parathyroid hormone (PTH) levels in subjects residing in high-exposure area of the Veneto Region of Italy. In this cross-sectional observational study, 1174 subjects who previously adhered to the 2016–2018 Regional Surveillance Plan for plasma levels of PFASs were recalled in 2023 and evaluated for demographic, anthropometrics and blood analyses. Data on nutritional habits and VitD supplementation were obtained by a dedicated questionnaire. Serum concentrations of PFASs, calcium, 25-hydroxy-vitamin D (25OH-VitD) and PTH were determined from blood sampling. Perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS) and perfluorohexanesulfonic acid (PFHxS) were the only three PFASs, of 12, quantifiable in at least 90% of the samples and considered for further analyses. Generalized additive models, using linear regression and smoothing thin plate splines, detected a positive association between serum calcium and all considered PFAS (PFOA: β = 0.03; CI 95% 0.01–0.06; PFOS: β = 0.06; CI 95% 0.02–0.09, PFHxS: β = 0.04; CI 95% 0.01–0.06). Estimated degrees of freedom (EDF) analysis showed the approximately linear association between serum calcium with PFOA (EDF = 1.89) and PFHxS (EDF = 1.21), but not for PFOS (EDF = 3.69). Differently, PFAS levels showed no association with either 25-hydroxy-vitamin D or PTH, except for ln-transformed 25OH-D and PFOS (β = 0.04; CI 95% 0.00–0.08). Stratified analyses confirmed the positive association between all considered PFAS and calcium in subjects not taking a VitD supplementation. Results show that high exposure levels to PFAS may interfere with calcium metabolism, independently of lifestyle and dietary factors. Further elucidation on the mechanisms underlying calcium homeostasis disruption, including multiple binding-equilibrium with serum albumin, remains to be addressed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Biochar, zeolite, and ferric chloride effectively separate phosphorus and nitrogen (plus potassium) in swine manure: A coagulation-flocculation-sedimentation approach Source identification and quantification of real-world PAH contributions from traffic-related exhaust and non-exhaust emission sources using the EFECT method Association of perfluoroalkyl substance (PFAS) on vitamin D biomarkers in a highly exposed population of the Veneto Region in Italy Micro- and nano-plastics pollution in the marine environment: Progresses, drawbacks and future guidelines Ecotoxicological efficiency of Cr(VI) removal treatment with reductive biogenic iron-based material determined by amphibian larval bioassays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1