Shuoshuo Shen , Jin Cheng , Zhenyu Liu , Jianrong Tan , Dequan Zhang
{"title":"Bayesian inference-assisted reliability analysis framework for robotic motion systems in future factories","authors":"Shuoshuo Shen , Jin Cheng , Zhenyu Liu , Jianrong Tan , Dequan Zhang","doi":"10.1016/j.ress.2025.110894","DOIUrl":null,"url":null,"abstract":"<div><div>Reliability assessment of robotic motion systems subject to complex dynamic properties and multi-source uncertainties in open environments registers an important yet challenging task. To tackle this task, this study proposes a new reliability analysis framework for robotic motion systems, which incorporates the moment-based method and Bayesian inference-guided probabilistic model updating strategy. To start with, the fractional exponential moments calculated by the sparse grid method are adopted to quantify the uncertainty of performance indexes for robotic motion systems. Subsequently, a versatile mixture probability distribution model is established to evaluate the reliability of the performance indexes, facilitating the probability distribution modeling of various features. To capture sufficient uncertainty information of the system performance, two solution strategies for probabilistic model parameters are developed by incorporating the direct and sequential Bayesian updating methods. With fractional exponential moments, the proposed probability model is calibrated to reconstruct the probability distribution and calculate the failure probability for robotic motion systems. The effectiveness of the proposed framework is validated by three numerical examples, wherein Monte Carlo simulation and other prevailing methods are performed for comparison. The case studies indicate that the proposed framework is viable to assess the performance reliability of robotic motion systems with satisfactory computational accuracy and efficiency.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"258 ","pages":"Article 110894"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025000973","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Reliability assessment of robotic motion systems subject to complex dynamic properties and multi-source uncertainties in open environments registers an important yet challenging task. To tackle this task, this study proposes a new reliability analysis framework for robotic motion systems, which incorporates the moment-based method and Bayesian inference-guided probabilistic model updating strategy. To start with, the fractional exponential moments calculated by the sparse grid method are adopted to quantify the uncertainty of performance indexes for robotic motion systems. Subsequently, a versatile mixture probability distribution model is established to evaluate the reliability of the performance indexes, facilitating the probability distribution modeling of various features. To capture sufficient uncertainty information of the system performance, two solution strategies for probabilistic model parameters are developed by incorporating the direct and sequential Bayesian updating methods. With fractional exponential moments, the proposed probability model is calibrated to reconstruct the probability distribution and calculate the failure probability for robotic motion systems. The effectiveness of the proposed framework is validated by three numerical examples, wherein Monte Carlo simulation and other prevailing methods are performed for comparison. The case studies indicate that the proposed framework is viable to assess the performance reliability of robotic motion systems with satisfactory computational accuracy and efficiency.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.