Hanin Alkhamis , Shivam Saretia , Susanne Schwanz , Rainhard Machatschek , Axel T. Neffe , Katarzyna Polak-Kraśna
{"title":"Understanding the degradation and mechanical performance of hyperelastic polylactide copolymers through bulk and ultrathin film analysis correlation","authors":"Hanin Alkhamis , Shivam Saretia , Susanne Schwanz , Rainhard Machatschek , Axel T. Neffe , Katarzyna Polak-Kraśna","doi":"10.1016/j.polymdegradstab.2025.111267","DOIUrl":null,"url":null,"abstract":"<div><div>Appropriate degradation behavior of medical implants is essential, as early degradation of implanted biomaterials can lead to premature loss of mechanical integrity, causing complications such as inflammation and inadequate support during the critical healing period. Therefore, understanding the degradation of newly developed materials for in vivo applications is crucial. Here, we investigated the degradation behavior of blends from Poly[(L-lactide)-co-(ε-caprolactone)] and Poly(D-lactide) (PLLAcoCL/PDLA) in which stereocomplex crystals of the isotactic lactide sequences impart hyperelastic behavior. The PLLAcoCL/PDLA blends were studied through in vitro bulk degradation studies (in printed films and electrospun meshes) and in thin-films using the Langmuir technique. Chemical, thermal, and mechanical properties were assessed at different time-points, highlighting the effects of blends composition and stereocomplexation. The PLLAcoCL/PDLA polymer blend shows promising potential as a covering for expandable cardiovascular implants, offering high ultimate strains (up to >700 %), elasticity, stability, and minimal mass loss during the crucial early healing period (4 weeks). Mechanical data suggest that specific blend ratios, particularly the 95:5 ratio in electrospun meshes, maintained mechanical integrity longer than others (<em>E</em> = 5.7 MPa at week 9), which was reflected in the mass loss of meshes (remaining mass = 67 wt% at week 20). Lower PDLA content accelerated early degradation while enhancing oxidative resistance, whereas higher PDLA content slowed degradation but increased crystallinity. These findings emphasize how blend composition influences degradation rates, mechanical behavior, and stability. Findings highlight the role of composition in tailoring implant degradation and support predictive modeling for cardiovascular applications.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"235 ","pages":"Article 111267"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025000977","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Appropriate degradation behavior of medical implants is essential, as early degradation of implanted biomaterials can lead to premature loss of mechanical integrity, causing complications such as inflammation and inadequate support during the critical healing period. Therefore, understanding the degradation of newly developed materials for in vivo applications is crucial. Here, we investigated the degradation behavior of blends from Poly[(L-lactide)-co-(ε-caprolactone)] and Poly(D-lactide) (PLLAcoCL/PDLA) in which stereocomplex crystals of the isotactic lactide sequences impart hyperelastic behavior. The PLLAcoCL/PDLA blends were studied through in vitro bulk degradation studies (in printed films and electrospun meshes) and in thin-films using the Langmuir technique. Chemical, thermal, and mechanical properties were assessed at different time-points, highlighting the effects of blends composition and stereocomplexation. The PLLAcoCL/PDLA polymer blend shows promising potential as a covering for expandable cardiovascular implants, offering high ultimate strains (up to >700 %), elasticity, stability, and minimal mass loss during the crucial early healing period (4 weeks). Mechanical data suggest that specific blend ratios, particularly the 95:5 ratio in electrospun meshes, maintained mechanical integrity longer than others (E = 5.7 MPa at week 9), which was reflected in the mass loss of meshes (remaining mass = 67 wt% at week 20). Lower PDLA content accelerated early degradation while enhancing oxidative resistance, whereas higher PDLA content slowed degradation but increased crystallinity. These findings emphasize how blend composition influences degradation rates, mechanical behavior, and stability. Findings highlight the role of composition in tailoring implant degradation and support predictive modeling for cardiovascular applications.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.