Space-depth mutual compensation for fine-grained fabric defect detection model

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2025-02-17 DOI:10.1016/j.asoc.2025.112869
Kailong Zhou, Jianhui Jia, Weitao Wu, Miao Qian, Zhong Xiang
{"title":"Space-depth mutual compensation for fine-grained fabric defect detection model","authors":"Kailong Zhou,&nbsp;Jianhui Jia,&nbsp;Weitao Wu,&nbsp;Miao Qian,&nbsp;Zhong Xiang","doi":"10.1016/j.asoc.2025.112869","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, using the deep learning approach in the textile industry for defect detection has emerged as a prominent research. However, detecting fabric defects remains challenging due to the small size and small number of fabric defect features. Traditional down-sampling operations that result in loss of feature information, interpolation up-sampling operations that add a lot of background redundant information, and interference with fabric images from external sources such as lighting or electromagnetic devices are significant barriers to achieving accurate defect detection using existing methods. In this work, we introduced a lightweight fabric defect detection method with enhanced resistance to interference. Firstly, we use YOLOv7-tiny as the basic model and integrate the Spatial Pyramid Dilated Convolution (SPD) and Efficient Channel Attention (ECA) modules to enhance the original MP-1 and Effective Long-Range Aggregation Network (ELAN) modules to retain fine-grained information, solve the problem of down-sampled feature loss and improve feature importance allocation. Secondly, a distinctive up-sampling Module (DTS) was proposed to replace the traditional interpolation up-sampling. The module expands the feature map size without adding extraneous information, thus ensuring more efficient integration of features of different sizes. Finally, a novel noise filtering technique called the Color Space Iterative (CSI) method was proposed to filter noise interference quickly and conveniently. Experiments on the open-source DAGM and TILDA defect datasets, as well as supplementary tests on CIFAR10 datasets for the CSI method, have yielded promising results. With a mere 3.4M parameters, the proposed lightweight model underscores the method’s superiority over the baseline in balancing model parameters, detection speed, and accuracy.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"172 ","pages":"Article 112869"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625001802","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, using the deep learning approach in the textile industry for defect detection has emerged as a prominent research. However, detecting fabric defects remains challenging due to the small size and small number of fabric defect features. Traditional down-sampling operations that result in loss of feature information, interpolation up-sampling operations that add a lot of background redundant information, and interference with fabric images from external sources such as lighting or electromagnetic devices are significant barriers to achieving accurate defect detection using existing methods. In this work, we introduced a lightweight fabric defect detection method with enhanced resistance to interference. Firstly, we use YOLOv7-tiny as the basic model and integrate the Spatial Pyramid Dilated Convolution (SPD) and Efficient Channel Attention (ECA) modules to enhance the original MP-1 and Effective Long-Range Aggregation Network (ELAN) modules to retain fine-grained information, solve the problem of down-sampled feature loss and improve feature importance allocation. Secondly, a distinctive up-sampling Module (DTS) was proposed to replace the traditional interpolation up-sampling. The module expands the feature map size without adding extraneous information, thus ensuring more efficient integration of features of different sizes. Finally, a novel noise filtering technique called the Color Space Iterative (CSI) method was proposed to filter noise interference quickly and conveniently. Experiments on the open-source DAGM and TILDA defect datasets, as well as supplementary tests on CIFAR10 datasets for the CSI method, have yielded promising results. With a mere 3.4M parameters, the proposed lightweight model underscores the method’s superiority over the baseline in balancing model parameters, detection speed, and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
Editorial Board Learning efficient branch-and-bound for solving Mixed Integer Linear Programs A directed batch growing self-organizing map based niching differential evolution for multimodal optimization problems Space-depth mutual compensation for fine-grained fabric defect detection model Domain Adaptation via Feature Disentanglement for cross-domain image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1