Water sample stability

IF 6.7 2区 环境科学与生态学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Environmental Technology & Innovation Pub Date : 2025-02-15 DOI:10.1016/j.eti.2025.104080
Lionel PINEAU , Vanessa CORDIER
{"title":"Water sample stability","authors":"Lionel PINEAU ,&nbsp;Vanessa CORDIER","doi":"10.1016/j.eti.2025.104080","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous guidelines have been issued on the conditions under which water samples should be transported and stored before microbiological analysis. These recommendations are often very restrictive regarding the maximum acceptable storage time (MAST) of samples before analysis and they generate operational constraints that have significant economic and environmental consequences (e.g. samples rejected, unjustified prolongation of quarantine of a water supply point or medical device, recontrol,…). Unfortunately, the relevance of these MAST has never been demonstrated. This study investigates bacterial flora evolution in water samples according to their storage time before analysis. The first part, conducted in laboratory conditions follows the concentration of microorganisms in artificially contaminated water samples. The second part involves a retrospective analysis of real water sample results to verify whether the results varied statistically according to the sample storage time before analysis. The results of the laboratory study confirm that the microorganism concentration in the artificially contaminated samples vary by less than 25 % during the storage time. The second part of the study demonstrates that the ratio of samples belonging to the different result groups (e.g. &lt; 1 CFU/ X mL, between 1 and 99 CFU/X mL and ≥ 100 CFU/100 mL) remains unchanged according to storage time (variation &lt; 1 %). These findings confirm that it is possible to increase the MAST defined in standards, up to 26 h or 28 h according to the microorganism considered (instead of 12 h or 18 h) without compromising the validity of microbiological analysis. These changes should limit the operational, environmental, and economic constraints associated with the actual MAST by reducing the number of samples rejected and consecutively the number of recontrols.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104080"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425000665","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous guidelines have been issued on the conditions under which water samples should be transported and stored before microbiological analysis. These recommendations are often very restrictive regarding the maximum acceptable storage time (MAST) of samples before analysis and they generate operational constraints that have significant economic and environmental consequences (e.g. samples rejected, unjustified prolongation of quarantine of a water supply point or medical device, recontrol,…). Unfortunately, the relevance of these MAST has never been demonstrated. This study investigates bacterial flora evolution in water samples according to their storage time before analysis. The first part, conducted in laboratory conditions follows the concentration of microorganisms in artificially contaminated water samples. The second part involves a retrospective analysis of real water sample results to verify whether the results varied statistically according to the sample storage time before analysis. The results of the laboratory study confirm that the microorganism concentration in the artificially contaminated samples vary by less than 25 % during the storage time. The second part of the study demonstrates that the ratio of samples belonging to the different result groups (e.g. < 1 CFU/ X mL, between 1 and 99 CFU/X mL and ≥ 100 CFU/100 mL) remains unchanged according to storage time (variation < 1 %). These findings confirm that it is possible to increase the MAST defined in standards, up to 26 h or 28 h according to the microorganism considered (instead of 12 h or 18 h) without compromising the validity of microbiological analysis. These changes should limit the operational, environmental, and economic constraints associated with the actual MAST by reducing the number of samples rejected and consecutively the number of recontrols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Technology & Innovation
Environmental Technology & Innovation Environmental Science-General Environmental Science
CiteScore
14.00
自引率
4.20%
发文量
435
审稿时长
74 days
期刊介绍: Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas. As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.
期刊最新文献
Effect of multi-stage inoculation on the efficiency of hyperthermophilic composting of cationic polyacrylamide-containing sludge An accelerated kinetic leach test for geochemical and environmental characterisation of acid and metalliferous drainage Water sample stability A calibration approach for a passive sampler based on a polymer inclusion membrane (PIM) for in situ Zn monitoring in Catalan rivers Effect of organic farming practices on soil health improvement of coconut farms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1