The interrelation among environmental quality, public accounts, and macroeconomic fundamentals: An analysis of OECD countries using machine learning techniques
{"title":"The interrelation among environmental quality, public accounts, and macroeconomic fundamentals: An analysis of OECD countries using machine learning techniques","authors":"Cosimo Magazzino , Muhammad Haroon","doi":"10.1016/j.envdev.2025.101175","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the intricate relationships among environmental quality, public finance indicators, and socioeconomic variables in OECD countries, using Machine Learning (ML) techniques for the period 1990–2021. The research uniquely identifies key factors influencing renewable energy consumption (REC) by incorporating various public finance indices, macroeconomic fundamentals, trade measures, and socio-economic variables. By emphasizing the role of public debt policies, the study uncovers their significant yet complex and non-linear influence on renewable energy adoption. Unlike existing studies, this research utilizes Neural Networks (NN), a state-of-the-art ML technique, to generate robust and reliable outcomes. This methodological innovation sets the study apart by offering more accurate feature importance scores compared to traditional econometric methods. The findings advance our understanding of the crucial role that public finance plays in achieving Sustainable Development Goals (SDGs), particularly SDG-7, and underscore the necessity of effective public debt management for fostering environmental sustainability. Policy implications drawn from the results provide actionable recommendations for governments to enhance REC adoption while achieving broader environmental goals.</div></div>","PeriodicalId":54269,"journal":{"name":"Environmental Development","volume":"54 ","pages":"Article 101175"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Development","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211464525000417","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the intricate relationships among environmental quality, public finance indicators, and socioeconomic variables in OECD countries, using Machine Learning (ML) techniques for the period 1990–2021. The research uniquely identifies key factors influencing renewable energy consumption (REC) by incorporating various public finance indices, macroeconomic fundamentals, trade measures, and socio-economic variables. By emphasizing the role of public debt policies, the study uncovers their significant yet complex and non-linear influence on renewable energy adoption. Unlike existing studies, this research utilizes Neural Networks (NN), a state-of-the-art ML technique, to generate robust and reliable outcomes. This methodological innovation sets the study apart by offering more accurate feature importance scores compared to traditional econometric methods. The findings advance our understanding of the crucial role that public finance plays in achieving Sustainable Development Goals (SDGs), particularly SDG-7, and underscore the necessity of effective public debt management for fostering environmental sustainability. Policy implications drawn from the results provide actionable recommendations for governments to enhance REC adoption while achieving broader environmental goals.
期刊介绍:
Environmental Development provides a future oriented, pro-active, authoritative source of information and learning for researchers, postgraduate students, policymakers, and managers, and bridges the gap between fundamental research and the application in management and policy practices. It stimulates the exchange and coupling of traditional scientific knowledge on the environment, with the experiential knowledge among decision makers and other stakeholders and also connects natural sciences and social and behavioral sciences. Environmental Development includes and promotes scientific work from the non-western world, and also strengthens the collaboration between the developed and developing world. Further it links environmental research to broader issues of economic and social-cultural developments, and is intended to shorten the delays between research and publication, while ensuring thorough peer review. Environmental Development also creates a forum for transnational communication, discussion and global action.
Environmental Development is open to a broad range of disciplines and authors. The journal welcomes, in particular, contributions from a younger generation of researchers, and papers expanding the frontiers of environmental sciences, pointing at new directions and innovative answers.
All submissions to Environmental Development are reviewed using the general criteria of quality, originality, precision, importance of topic and insights, clarity of exposition, which are in keeping with the journal''s aims and scope.