Numerical simulation and analysis of the modulation effect of sub-grid turbulent orographic form drag on warm-sector heavy rainfall in South China

IF 4.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Research Pub Date : 2025-02-14 DOI:10.1016/j.atmosres.2025.107991
Peilan Huang , Qilin Wan , Lifang Li , Sheng Hu
{"title":"Numerical simulation and analysis of the modulation effect of sub-grid turbulent orographic form drag on warm-sector heavy rainfall in South China","authors":"Peilan Huang ,&nbsp;Qilin Wan ,&nbsp;Lifang Li ,&nbsp;Sheng Hu","doi":"10.1016/j.atmosres.2025.107991","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical models frequently cannot accurately predict warm-sector heavy rainfall (WSHR) in South China, which presents a challenge in forecasting severe weather events in the region. Considering the substantial impact of complex orography on the forecasting of WSHR in South China, to improve the accuracy of numerical models in predicting WSHR, this study utilized the non-hydrostatic mesoscale numerical model Weather Research Forecast (WRF) to simulate a WSHR event in the Pearl River Delta from 12:00 UTC on May 9, 2022, to 12:00 UTC on May 11, 2022. The modulation effect of Turbulent Orographic Form Drag (TOFD) on the prediction accuracy of the WSHR was investigated through sensitivity tests. The simulations suggest that TOFD improved the forecasting accuracy for WSHR in South China. TOFD significantly impacted the intensity and location of WSHR in the Pearl River Delta region. After incorporating TOFD, the forecast accuracy of WSHR improved in some regions (such as Guangzhou). Specifically, in the Pearl River Delta region, the TS score for 6-h heavy precipitation (&gt;100 mm) increases by 91.12 %. The precipitation center shifts eastward, and the area affected by WSHR expands. Furthermore, the incorporation of TOFD in the simulations resulted in a delay of the WSHR onset time by 1–2 h and an extension of its duration by 1 h. Both these improvements brought the model results closer to actual observations. Additionally, with the inclusion of TOFD, the weakening of southerly winds has led to enhanced wind field convergence and stronger moisture convergence, resulting in increased moisture. In warm and moist atmospheric environments, there was an extended period of energy accumulation, resulting in a thicker mixed layer, increased negative buoyancy, and intensified upward airflow. As the system continued to move eastward, incorporating TOFD resulted in a further eastward positioning of the WSHR. Additionally, the intensity of the WSHR was stronger and the duration of intense precipitation was longer. The study highlights the critical role of TOFD in the realistic representation of WSHR by numerical models for South China.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"318 ","pages":"Article 107991"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809525000833","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical models frequently cannot accurately predict warm-sector heavy rainfall (WSHR) in South China, which presents a challenge in forecasting severe weather events in the region. Considering the substantial impact of complex orography on the forecasting of WSHR in South China, to improve the accuracy of numerical models in predicting WSHR, this study utilized the non-hydrostatic mesoscale numerical model Weather Research Forecast (WRF) to simulate a WSHR event in the Pearl River Delta from 12:00 UTC on May 9, 2022, to 12:00 UTC on May 11, 2022. The modulation effect of Turbulent Orographic Form Drag (TOFD) on the prediction accuracy of the WSHR was investigated through sensitivity tests. The simulations suggest that TOFD improved the forecasting accuracy for WSHR in South China. TOFD significantly impacted the intensity and location of WSHR in the Pearl River Delta region. After incorporating TOFD, the forecast accuracy of WSHR improved in some regions (such as Guangzhou). Specifically, in the Pearl River Delta region, the TS score for 6-h heavy precipitation (>100 mm) increases by 91.12 %. The precipitation center shifts eastward, and the area affected by WSHR expands. Furthermore, the incorporation of TOFD in the simulations resulted in a delay of the WSHR onset time by 1–2 h and an extension of its duration by 1 h. Both these improvements brought the model results closer to actual observations. Additionally, with the inclusion of TOFD, the weakening of southerly winds has led to enhanced wind field convergence and stronger moisture convergence, resulting in increased moisture. In warm and moist atmospheric environments, there was an extended period of energy accumulation, resulting in a thicker mixed layer, increased negative buoyancy, and intensified upward airflow. As the system continued to move eastward, incorporating TOFD resulted in a further eastward positioning of the WSHR. Additionally, the intensity of the WSHR was stronger and the duration of intense precipitation was longer. The study highlights the critical role of TOFD in the realistic representation of WSHR by numerical models for South China.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Research
Atmospheric Research 地学-气象与大气科学
CiteScore
9.40
自引率
10.90%
发文量
460
审稿时长
47 days
期刊介绍: The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.
期刊最新文献
The role of Madden-Julian Oscillation, Westerly Wind Bursts, and Kelvin Waves in triggering extreme rainfall through Mesoscale Convective Systems: A case study of West Sumatra, March 7–8, 2024 Sources and light absorption of brown carbon in urban areas of the Sichuan Basin, China: Contribution from biomass burning and secondary formation The influence of mixed layer depth along the course of incoming air masses to the transport of PM10 components at three rural sampling sites in Spain Impact of different scale-aware cumulus parameterizations on precipitation forecasts over Korea Numerical simulation and analysis of the modulation effect of sub-grid turbulent orographic form drag on warm-sector heavy rainfall in South China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1