Thermal physiology of dung beetles exposed to ivermectin, a veterinary drug

IF 2.9 2区 生物学 Q2 BIOLOGY Journal of thermal biology Pub Date : 2025-02-01 DOI:10.1016/j.jtherbio.2025.104080
Andrea Esquivel-Román , Fernanda Baena-Díaz , Carlos Bustos-Segura , Ornela De Gasperin , Daniel González-Tokman
{"title":"Thermal physiology of dung beetles exposed to ivermectin, a veterinary drug","authors":"Andrea Esquivel-Román ,&nbsp;Fernanda Baena-Díaz ,&nbsp;Carlos Bustos-Segura ,&nbsp;Ornela De Gasperin ,&nbsp;Daniel González-Tokman","doi":"10.1016/j.jtherbio.2025.104080","DOIUrl":null,"url":null,"abstract":"<div><div>Global changes, including increasing temperatures and pesticide contamination threaten insect survival and reproduction by altering metabolism and stress responses. Of particular importance are insects that provide ecosystem services and are threatened by multiple stressors, such as dung beetles, which bury dung in forests and cattle pastures. This study investigated how elevated temperature and ivermectin, a common antiparasitic medication used in cattle that is excreted in dung, affect the thermal physiology of <em>Euoniticellus intermedius</em> dung beetles under controlled laboratory conditions. Our study evaluated, under laboratory conditions, the effect of the combination of high temperature and ivermectin, on heat tolerance, metabolic rate, and survival of female dung beetles <em>E. intermedius</em>. We found that ivermectin reduced survival at 29 °C but not at 33 °C, potentially due to heat-induced hormetic effects, which activate defense systems, protecting organisms from the effects of a second stressor, in this case, ivermectin. Ivermectin and high temperature increased metabolic rate, which could have potential negative effects on oxidative stress and longevity. Finally, critical thermal maximum was not affected by ivermectin or temperature. By impacting physiological traits and individual survival, high temperatures and pesticides may disrupt population dynamics and ecosystem services provided by dung beetles.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"128 ","pages":"Article 104080"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456525000373","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Global changes, including increasing temperatures and pesticide contamination threaten insect survival and reproduction by altering metabolism and stress responses. Of particular importance are insects that provide ecosystem services and are threatened by multiple stressors, such as dung beetles, which bury dung in forests and cattle pastures. This study investigated how elevated temperature and ivermectin, a common antiparasitic medication used in cattle that is excreted in dung, affect the thermal physiology of Euoniticellus intermedius dung beetles under controlled laboratory conditions. Our study evaluated, under laboratory conditions, the effect of the combination of high temperature and ivermectin, on heat tolerance, metabolic rate, and survival of female dung beetles E. intermedius. We found that ivermectin reduced survival at 29 °C but not at 33 °C, potentially due to heat-induced hormetic effects, which activate defense systems, protecting organisms from the effects of a second stressor, in this case, ivermectin. Ivermectin and high temperature increased metabolic rate, which could have potential negative effects on oxidative stress and longevity. Finally, critical thermal maximum was not affected by ivermectin or temperature. By impacting physiological traits and individual survival, high temperatures and pesticides may disrupt population dynamics and ecosystem services provided by dung beetles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of thermal biology
Journal of thermal biology 生物-动物学
CiteScore
5.30
自引率
7.40%
发文量
196
审稿时长
14.5 weeks
期刊介绍: The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are: • The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature • The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature • Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause • Effects of temperature on reproduction and development, growth, ageing and life-span • Studies on modelling heat transfer between organisms and their environment • The contributions of temperature to effects of climate change on animal species and man • Studies of conservation biology and physiology related to temperature • Behavioural and physiological regulation of body temperature including its pathophysiology and fever • Medical applications of hypo- and hyperthermia Article types: • Original articles • Review articles
期刊最新文献
Impact of claw trimming on surface temperature variations across claw regions in dairy cows: Insights from infrared thermography A practical deep learning model for core temperature prediction of specialized workers in high-temperature environments Thermal physiology of dung beetles exposed to ivermectin, a veterinary drug Acclimation effects on thermal locomotor performance of the invasive Polyphagous Shot Hole Borer beetle, Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae) Biophysical versus machine learning models for predicting rectal and skin temperatures in older adults
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1