Integrating straw return and tillage practices to enhance soil organic carbon sequestration in wheat–maize rotation systems in the North China Plain

IF 6 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Agriculture, Ecosystems & Environment Pub Date : 2025-02-19 DOI:10.1016/j.agee.2025.109555
Hua Han , Daijia Fan , Shuxia Liu , Rong Jiang , Daping Song , Guoyuan Zou , Ping He , Minyu Wang , Wentian He
{"title":"Integrating straw return and tillage practices to enhance soil organic carbon sequestration in wheat–maize rotation systems in the North China Plain","authors":"Hua Han ,&nbsp;Daijia Fan ,&nbsp;Shuxia Liu ,&nbsp;Rong Jiang ,&nbsp;Daping Song ,&nbsp;Guoyuan Zou ,&nbsp;Ping He ,&nbsp;Minyu Wang ,&nbsp;Wentian He","doi":"10.1016/j.agee.2025.109555","DOIUrl":null,"url":null,"abstract":"<div><div>Straw return is a crucial strategy for enhancing soil organic carbon (SOC) sequestration in winter wheat–summer maize rotation systems in the North China Plain. However, the effects of straw return combined with different tillage practices on SOC sequestration under different environmental and management conditions across the soil profile remain unclear. A meta-analysis was conducted based on 2525 pairs of observations to investigate the effects of straw return combined with no tillage (NT), reduced tillage (RT), and conventional tillage (CT) on SOC content in wheat–maize rotation systems in the North China Plain. The results indicated that, compared with straw removal, straw return with NT and RT significantly increased the SOC content in the 0–40 cm layer, which was attributed to reduced soil disturbance and promoted SOC surface accumulation. The largest increase was observed in the 0–20 cm layer under NT (12.7 %) and in the 20–40 cm layer under RT (12.7 %). CT showed the greatest increase in SOC content below 40 cm (10.0 %), and RT did not affect SOC below the 40 cm layer relative to CT because deep tillage increased inputs of straw C and transferred topsoil with higher SOC to the subsoil layer. Mean annual precipitation, initial SOC content, and straw quantity were the major drivers regulating the response of SOC sequestration to straw return. Specifically, regions with mean annual temperatures above 15℃ and precipitation over 700 mm had a greater increase in SOC under straw return. Straw return under NT and RT led to the largest increase in SOC content when initial SOC was between 5 and 10 g kg<sup>−1</sup> or with a straw return duration of 16–20 years. Straw return under CT showed the greatest increase when initial SOC exceeded 10 g kg<sup>−1</sup> or with a straw return duration of 6–10 years. SOC content reached the highest level under RT and CT with a straw quantity of 10–15 t ha<sup>−1</sup> and under NT with a straw quantity of less than 10 t ha<sup>−1</sup>. Structural equation modeling showed that climatic conditions were positively correlated with the response of SOC to straw return and that soil properties and management practices exhibited a negative correlation. The effects of straw return combined with different tillage practices on the C footprint of agricultural systems should be explored in further research.</div></div>","PeriodicalId":7512,"journal":{"name":"Agriculture, Ecosystems & Environment","volume":"384 ","pages":"Article 109555"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture, Ecosystems & Environment","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167880925000878","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Straw return is a crucial strategy for enhancing soil organic carbon (SOC) sequestration in winter wheat–summer maize rotation systems in the North China Plain. However, the effects of straw return combined with different tillage practices on SOC sequestration under different environmental and management conditions across the soil profile remain unclear. A meta-analysis was conducted based on 2525 pairs of observations to investigate the effects of straw return combined with no tillage (NT), reduced tillage (RT), and conventional tillage (CT) on SOC content in wheat–maize rotation systems in the North China Plain. The results indicated that, compared with straw removal, straw return with NT and RT significantly increased the SOC content in the 0–40 cm layer, which was attributed to reduced soil disturbance and promoted SOC surface accumulation. The largest increase was observed in the 0–20 cm layer under NT (12.7 %) and in the 20–40 cm layer under RT (12.7 %). CT showed the greatest increase in SOC content below 40 cm (10.0 %), and RT did not affect SOC below the 40 cm layer relative to CT because deep tillage increased inputs of straw C and transferred topsoil with higher SOC to the subsoil layer. Mean annual precipitation, initial SOC content, and straw quantity were the major drivers regulating the response of SOC sequestration to straw return. Specifically, regions with mean annual temperatures above 15℃ and precipitation over 700 mm had a greater increase in SOC under straw return. Straw return under NT and RT led to the largest increase in SOC content when initial SOC was between 5 and 10 g kg−1 or with a straw return duration of 16–20 years. Straw return under CT showed the greatest increase when initial SOC exceeded 10 g kg−1 or with a straw return duration of 6–10 years. SOC content reached the highest level under RT and CT with a straw quantity of 10–15 t ha−1 and under NT with a straw quantity of less than 10 t ha−1. Structural equation modeling showed that climatic conditions were positively correlated with the response of SOC to straw return and that soil properties and management practices exhibited a negative correlation. The effects of straw return combined with different tillage practices on the C footprint of agricultural systems should be explored in further research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agriculture, Ecosystems & Environment
Agriculture, Ecosystems & Environment 环境科学-环境科学
CiteScore
11.70
自引率
9.10%
发文量
392
审稿时长
26 days
期刊介绍: Agriculture, Ecosystems and Environment publishes scientific articles dealing with the interface between agroecosystems and the natural environment, specifically how agriculture influences the environment and how changes in that environment impact agroecosystems. Preference is given to papers from experimental and observational research at the field, system or landscape level, from studies that enhance our understanding of processes using data-based biophysical modelling, and papers that bridge scientific disciplines and integrate knowledge. All papers should be placed in an international or wide comparative context.
期刊最新文献
Landscape type and variation in landscape heterogeneity cause species turnover rather than loss in agricultural landscapes Relationship between seed predation and activity-density of carabid beetles in farmland: A meta-regression Intensive rotational grazing has positive effects on productivity of rangeland Mineral fertilizer substitution and application of Bacillus velezensis SQR9 reduced nitrogen-oxide emissions in tropical vegetable fields Enhancing soil ecological stoichiometry and orchard yield through ground cover management: A meta-analysis across China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1