Design of a large-scale superconducting dipole magnet for the CEE spectrometer

Yuquan Chen , Wei You , Jiaqi Lu , Yujin Tong , Luncai Zhou , Beimin Wu , Enming Mei , Wentian Feng , Xianjin Ou , Wei Wu , Qinggao Yao , Peng Yang , Yuhong Yu , Zhiyu Sun
{"title":"Design of a large-scale superconducting dipole magnet for the CEE spectrometer","authors":"Yuquan Chen ,&nbsp;Wei You ,&nbsp;Jiaqi Lu ,&nbsp;Yujin Tong ,&nbsp;Luncai Zhou ,&nbsp;Beimin Wu ,&nbsp;Enming Mei ,&nbsp;Wentian Feng ,&nbsp;Xianjin Ou ,&nbsp;Wei Wu ,&nbsp;Qinggao Yao ,&nbsp;Peng Yang ,&nbsp;Yuhong Yu ,&nbsp;Zhiyu Sun","doi":"10.1016/j.nima.2025.170324","DOIUrl":null,"url":null,"abstract":"<div><div>The CSR External-target Experiment (CEE) is a large-scale spectrometer under construction at the Heavy Ion Research Facility in Lanzhou (HIRFL) for studying the phase structure of nuclear matter at high baryon density and the equation of states of nuclear matter at supra-saturation densities. One of the key components is a large acceptance dipole magnet with a central field of 5000 Gauss and the homogeneity of 5% within a 1 m long, 1.2 m wide, and 0.9 m high aperture. Detectors will be installed within this aperture. An innovative design for the superconducting detector magnet that goes beyond the conventional approach is proposed. The magnet is designed as a coil-dominant type, with conductors discretized on a racetrack-shaped cross-section to generate the necessary fields. A warm iron yoke is used to enhance the central field and minimize the stray field. The magnet has overall dimensions of 3.4 m in length, 2.7 m in height, and 4.3 m in width. The coils will be wound using a 19-strand rope cable comprised of 12 NbTi superconducting wires and 7 copper wires. The ratio of copper to superconductor of the cable is 6.9. The keel supports serve as the primary structural support for the coils to withstand the electromagnetic force. The superconducting coils will be indirectly cooled by liquid helium within three external helium vessels. To ensure reliable protection of the magnet during a quench, an active protection method combined with a quench-back effect is employed. This paper presents a detailed design of the magnetic field, structure, quench protection, and cryostat for the spectrometer magnet.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1074 ","pages":"Article 170324"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225001251","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The CSR External-target Experiment (CEE) is a large-scale spectrometer under construction at the Heavy Ion Research Facility in Lanzhou (HIRFL) for studying the phase structure of nuclear matter at high baryon density and the equation of states of nuclear matter at supra-saturation densities. One of the key components is a large acceptance dipole magnet with a central field of 5000 Gauss and the homogeneity of 5% within a 1 m long, 1.2 m wide, and 0.9 m high aperture. Detectors will be installed within this aperture. An innovative design for the superconducting detector magnet that goes beyond the conventional approach is proposed. The magnet is designed as a coil-dominant type, with conductors discretized on a racetrack-shaped cross-section to generate the necessary fields. A warm iron yoke is used to enhance the central field and minimize the stray field. The magnet has overall dimensions of 3.4 m in length, 2.7 m in height, and 4.3 m in width. The coils will be wound using a 19-strand rope cable comprised of 12 NbTi superconducting wires and 7 copper wires. The ratio of copper to superconductor of the cable is 6.9. The keel supports serve as the primary structural support for the coils to withstand the electromagnetic force. The superconducting coils will be indirectly cooled by liquid helium within three external helium vessels. To ensure reliable protection of the magnet during a quench, an active protection method combined with a quench-back effect is employed. This paper presents a detailed design of the magnetic field, structure, quench protection, and cryostat for the spectrometer magnet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
21.40%
发文量
787
审稿时长
1 months
期刊介绍: Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section. Theoretical as well as experimental papers are accepted.
期刊最新文献
Design and simulation for a 90Sr ion trap – laser cooling spectrometer Modeling of surface-state induced inter-electrode isolation of n-on-p devices in mixed-field and γ-irradiation environments Observation of acoustically silent bubble-nucleation events in superheated drop detector A novel low-background photomultiplier tube developed for xenon based detectors Design of a large-scale superconducting dipole magnet for the CEE spectrometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1