Mean activity coefficients, phase equilibria of ternary system KCl-KHCO3-H2O at 288.2 and 308.2 K and separation of potassium salts in pesticide imidacloprid production wastewater
Yan Feng, Shi-Hua Sang, Kuang-Yi Zhu, Chun-Tao Hu, Xiao-Tian Tan
{"title":"Mean activity coefficients, phase equilibria of ternary system KCl-KHCO3-H2O at 288.2 and 308.2 K and separation of potassium salts in pesticide imidacloprid production wastewater","authors":"Yan Feng, Shi-Hua Sang, Kuang-Yi Zhu, Chun-Tao Hu, Xiao-Tian Tan","doi":"10.1016/j.molliq.2025.127131","DOIUrl":null,"url":null,"abstract":"<div><div>Thermodynamic properties and phase equilibria of aqueous solutions containing potassium salts is of great significance for the resource recovery and utilization of pesticide production wastewater and waste residue. In order to further optimize the mixed ion interaction parameters of electrolyte solution containing HCO<sub>3</sub><sup>2−</sup> and recover KCl and KHCO<sub>3</sub> from imidacloprid production wastewater, the mean activity coefficients of KCl-KHCO<sub>3</sub>-H<sub>2</sub>O mixed electrolyte solutions at 288.2 K and 308.2 K were investigated using the cell potential method, then the phase equilibria of the ternary system KCl-KHCO<sub>3</sub>-H<sub>2</sub>O at 288.2 K and 308.2 K was measured experimentally by the isothermal dissolution equilibrium method. In addition, the mixed ion interaction parameters <span><math><msub><mi>θ</mi><mrow><mi>C</mi><mi>l</mi><mo>,</mo><msub><mrow><mi>H</mi><mi>C</mi><mi>O</mi></mrow><mn>3</mn></msub></mrow></msub></math></span> and <span><math><msub><mi>Ψ</mi><mrow><mi>K</mi><mo>,</mo><mi>C</mi><mi>l</mi><mo>,</mo><mi>H</mi><mi>C</mi><msub><mi>O</mi><mn>3</mn></msub></mrow></msub></math></span> in the Pitzer model were solved by combining the mean activity coefficients of KCl in the mixed electrolyte solutions and solubility data of ternary system, and other related thermodynamic parameters were calculated. Furthermore, the solubilities of the ternary system were calculated by using Pitzer model. The calculation results and experimental data are in good agreement. Subsequently, the precipitation amounts of various salts of imidacloprid production wastewater during isothermal evaporation were calculated based on the experimental phase diagrams at 288.2 K and 308.2 K. The process of recovering potassium salts was designed, and the theoretical basis for the separation of potassium salts in wastewater was provided.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"422 ","pages":"Article 127131"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225002971","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodynamic properties and phase equilibria of aqueous solutions containing potassium salts is of great significance for the resource recovery and utilization of pesticide production wastewater and waste residue. In order to further optimize the mixed ion interaction parameters of electrolyte solution containing HCO32− and recover KCl and KHCO3 from imidacloprid production wastewater, the mean activity coefficients of KCl-KHCO3-H2O mixed electrolyte solutions at 288.2 K and 308.2 K were investigated using the cell potential method, then the phase equilibria of the ternary system KCl-KHCO3-H2O at 288.2 K and 308.2 K was measured experimentally by the isothermal dissolution equilibrium method. In addition, the mixed ion interaction parameters and in the Pitzer model were solved by combining the mean activity coefficients of KCl in the mixed electrolyte solutions and solubility data of ternary system, and other related thermodynamic parameters were calculated. Furthermore, the solubilities of the ternary system were calculated by using Pitzer model. The calculation results and experimental data are in good agreement. Subsequently, the precipitation amounts of various salts of imidacloprid production wastewater during isothermal evaporation were calculated based on the experimental phase diagrams at 288.2 K and 308.2 K. The process of recovering potassium salts was designed, and the theoretical basis for the separation of potassium salts in wastewater was provided.
期刊介绍:
The journal includes papers in the following areas:
– Simple organic liquids and mixtures
– Ionic liquids
– Surfactant solutions (including micelles and vesicles) and liquid interfaces
– Colloidal solutions and nanoparticles
– Thermotropic and lyotropic liquid crystals
– Ferrofluids
– Water, aqueous solutions and other hydrogen-bonded liquids
– Lubricants, polymer solutions and melts
– Molten metals and salts
– Phase transitions and critical phenomena in liquids and confined fluids
– Self assembly in complex liquids.– Biomolecules in solution
The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include:
– Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.)
– Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.)
– Light scattering (Rayleigh, Brillouin, PCS, etc.)
– Dielectric relaxation
– X-ray and neutron scattering and diffraction.
Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.