Maximilian Gorsky , Theresa Johanni , Sebastian Wiederrecht
{"title":"A note on the 2-factor Hamiltonicity Conjecture","authors":"Maximilian Gorsky , Theresa Johanni , Sebastian Wiederrecht","doi":"10.1016/j.disc.2025.114442","DOIUrl":null,"url":null,"abstract":"<div><div>The 2-factor Hamiltonicity Conjecture by Funk, Jackson, Labbate, and Sheehan [JCTB, 2003] asserts that all cubic, bipartite graphs in which all 2-factors are Hamiltonian cycles can be built using a simple operation starting from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> and the Heawood graph.</div><div>We discuss the link between this conjecture and matching theory, in particular by showing that this conjecture is equivalent to the statement that the two exceptional graphs in the conjecture are the only cubic braces in which all 2-factors are Hamiltonian cycles, where braces are connected, bipartite graphs in which every matching of size at most two is contained in a perfect matching. In the context of matching theory this conjecture is especially noteworthy as <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> and the Heawood graph are both strongly tied to the important class of Pfaffian graphs, with <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub></math></span> being the canonical non-Pfaffian graph and the Heawood graph being one of the most noteworthy Pfaffian graphs.</div><div>Our main contribution is a proof that the Heawood graph is the only Pfaffian, cubic brace in which all 2-factors are Hamiltonian cycles. This is shown by establishing that, aside from the Heawood graph, all Pfaffian braces contain a cycle of length four, which may be of independent interest.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 6","pages":"Article 114442"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25000500","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The 2-factor Hamiltonicity Conjecture by Funk, Jackson, Labbate, and Sheehan [JCTB, 2003] asserts that all cubic, bipartite graphs in which all 2-factors are Hamiltonian cycles can be built using a simple operation starting from and the Heawood graph.
We discuss the link between this conjecture and matching theory, in particular by showing that this conjecture is equivalent to the statement that the two exceptional graphs in the conjecture are the only cubic braces in which all 2-factors are Hamiltonian cycles, where braces are connected, bipartite graphs in which every matching of size at most two is contained in a perfect matching. In the context of matching theory this conjecture is especially noteworthy as and the Heawood graph are both strongly tied to the important class of Pfaffian graphs, with being the canonical non-Pfaffian graph and the Heawood graph being one of the most noteworthy Pfaffian graphs.
Our main contribution is a proof that the Heawood graph is the only Pfaffian, cubic brace in which all 2-factors are Hamiltonian cycles. This is shown by establishing that, aside from the Heawood graph, all Pfaffian braces contain a cycle of length four, which may be of independent interest.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.