Spatial multi criteria analysis of ground conditions in early stages railway planning using analytical hierarchy process applied to viaduct-type rail in Southern Sweden.
{"title":"Spatial multi criteria analysis of ground conditions in early stages railway planning using analytical hierarchy process applied to viaduct-type rail in Southern Sweden.","authors":"Joakim Robygd , Lars Harrie , Tina Martin","doi":"10.1016/j.enggeo.2025.107962","DOIUrl":null,"url":null,"abstract":"<div><div>This study applies a spatial multi-criteria analysis to assess ground suitability for pier-supported viaduct railways using the Analytical Hierarchy Process (AHP). By integrating expert judgments, the analysis evaluates six key geotechnical categories—soil type, soil depth, rock type, slope, wetness index, and groundwater occurrence—to map ground suitability. Three weight normalisation methods were tested to explore how different normalisation approaches affect the resulting suitability assessments. The results reveal significant variations in suitability maps, highlighting how different expert weighting strategies can influence decision-making during early-stage railway planning. Uncertainty maps were generated and used to identify areas requiring further investigation. The methodology is applied to an area in Southern Sweden, between the cities of Lund and Hässleholm to compare the weighting strategies over a relevant and geologically diverse area. A practical application comparing foundation types along identified routes showed that AHP-guided pathfinding achieved a clear preference for ground conditions suitable for non-piled foundations compared to a reference line. The method provides a systematic framework for preliminary geotechnical evaluations in railway planning, enabling more focused site investigations and supporting industrialized construction approaches.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"348 ","pages":"Article 107962"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000584","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study applies a spatial multi-criteria analysis to assess ground suitability for pier-supported viaduct railways using the Analytical Hierarchy Process (AHP). By integrating expert judgments, the analysis evaluates six key geotechnical categories—soil type, soil depth, rock type, slope, wetness index, and groundwater occurrence—to map ground suitability. Three weight normalisation methods were tested to explore how different normalisation approaches affect the resulting suitability assessments. The results reveal significant variations in suitability maps, highlighting how different expert weighting strategies can influence decision-making during early-stage railway planning. Uncertainty maps were generated and used to identify areas requiring further investigation. The methodology is applied to an area in Southern Sweden, between the cities of Lund and Hässleholm to compare the weighting strategies over a relevant and geologically diverse area. A practical application comparing foundation types along identified routes showed that AHP-guided pathfinding achieved a clear preference for ground conditions suitable for non-piled foundations compared to a reference line. The method provides a systematic framework for preliminary geotechnical evaluations in railway planning, enabling more focused site investigations and supporting industrialized construction approaches.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.