Multiple-site activation induced by guanidine ionic liquid decorated chromium (III) terephthalate for coupling of carbon dioxide with epoxides

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-02-16 DOI:10.1016/j.jcis.2025.02.087
Nengjie Feng , Linyan Cheng , Yukun Zhang , Yujie Tao , Hui Wan , Chong Chen , Guofeng Guan
{"title":"Multiple-site activation induced by guanidine ionic liquid decorated chromium (III) terephthalate for coupling of carbon dioxide with epoxides","authors":"Nengjie Feng ,&nbsp;Linyan Cheng ,&nbsp;Yukun Zhang ,&nbsp;Yujie Tao ,&nbsp;Hui Wan ,&nbsp;Chong Chen ,&nbsp;Guofeng Guan","doi":"10.1016/j.jcis.2025.02.087","DOIUrl":null,"url":null,"abstract":"<div><div>Cycloaddition, as a sound strategy for high-value utilization of carbon dioxide (CO<sub>2</sub>), has been long pursued, wherein the challenging substrate activation process is a top priority for devising novel heterogeneous catalysts. In this study, a guanidine-based ionic liquid tethering –NH<sub>2</sub> groups was designed and integrated with chromium (III) terephthalate (MIL-101(Cr)) through the coordination with unsaturated Cr<sup>3+</sup> centers. The developed [NH<sub>2</sub>TMG]Br@MIL-101(Cr) (TMG represents tetramethylguanidine) decorated with plentiful basic functional groups created a fast channel for the capturing and binding of CO<sub>2</sub>, while the highly-accessible Lewis acidic sites (Cr<sup>3+</sup>) and hydrogen bond donors (N<sup>+</sup>-H) embedded within the nanocomposite synergized to activate the epoxide, synchronously. Under the reaction conditions optimized by response surface methodology (RSM) (103.2 °C, 1.03 MPa, 1.85 h, and 2.53 wt% of catalyst), a satisfactory chloropropene carbonate (CPC) yield of 98.2 % with a selectivity of 99.2 % were achieved. We further demonstrated the heterogeneity and recyclability of [NH<sub>2</sub>TMG]Br@MIL-101(Cr), and ascertained the substrate expansibility. Moreover, the in-situ diffuse reflectance infrared Fourier-transform spectra (DRIFTS) and density functional theory (DFT) computations afforded deep insights into the proposed multiple-site activation mechanism for CO<sub>2</sub> coupling. This study highlighted an innovative pathway for constructing durable IL@MOFs nanocomposites and presented a tangible route to effectively converting CO<sub>2</sub>.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"687 ","pages":"Pages 561-572"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725004412","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cycloaddition, as a sound strategy for high-value utilization of carbon dioxide (CO2), has been long pursued, wherein the challenging substrate activation process is a top priority for devising novel heterogeneous catalysts. In this study, a guanidine-based ionic liquid tethering –NH2 groups was designed and integrated with chromium (III) terephthalate (MIL-101(Cr)) through the coordination with unsaturated Cr3+ centers. The developed [NH2TMG]Br@MIL-101(Cr) (TMG represents tetramethylguanidine) decorated with plentiful basic functional groups created a fast channel for the capturing and binding of CO2, while the highly-accessible Lewis acidic sites (Cr3+) and hydrogen bond donors (N+-H) embedded within the nanocomposite synergized to activate the epoxide, synchronously. Under the reaction conditions optimized by response surface methodology (RSM) (103.2 °C, 1.03 MPa, 1.85 h, and 2.53 wt% of catalyst), a satisfactory chloropropene carbonate (CPC) yield of 98.2 % with a selectivity of 99.2 % were achieved. We further demonstrated the heterogeneity and recyclability of [NH2TMG]Br@MIL-101(Cr), and ascertained the substrate expansibility. Moreover, the in-situ diffuse reflectance infrared Fourier-transform spectra (DRIFTS) and density functional theory (DFT) computations afforded deep insights into the proposed multiple-site activation mechanism for CO2 coupling. This study highlighted an innovative pathway for constructing durable IL@MOFs nanocomposites and presented a tangible route to effectively converting CO2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环加成反应作为二氧化碳(CO2)高值化利用的一种有效策略,一直受到人们的关注,而其中具有挑战性的底物活化过程是设计新型异质催化剂的重中之重。本研究设计了一种拴有 -NH2 基团的胍基离子液体,并通过与不饱和 Cr3+ 中心配位,将其与对苯二甲酸铬(III)(MIL-101(Cr))结合在一起。开发出的[NH2TMG]Br@MIL-101(Cr)(TMG 代表四甲基胍)装饰有大量的碱性官能团,为捕获和结合 CO2 创造了一个快速通道,而纳米复合材料中嵌入的高可达性路易斯酸位点(Cr3+)和氢键供体(N+-H)协同作用,同步激活环氧化物。在响应面方法(RSM)优化的反应条件(103.2 °C、1.03 兆帕、1.85 小时和 2.53 wt% 催化剂)下,获得了令人满意的碳酸氯丙烯酯(CPC)产率 98.2%,选择性 99.2%。我们进一步证明了[NH2TMG]Br@MIL-101(Cr)的异质性和可回收性,并确定了底物的扩展性。此外,原位漫反射红外傅立叶变换光谱(DRIFTS)和密度泛函理论(DFT)计算深入揭示了二氧化碳耦合的多位点活化机制。这项研究强调了构建耐用的 IL@MOFs 纳米复合材料的创新途径,并为有效转化二氧化碳提供了一条切实可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production. Modulation of interface structure on titanium-based metal-organic frameworks heterojunctions for boosting photocatalytic carbon dioxide reduction. In-situ conversion of BiOBr to Br-doped BiOCl nanosheets for "rocking chair" zinc-ion battery. In-situ engineering of centralized mesopores and edge nitrogen for porous carbons toward zinc ion hybrid capacitors. Floating BiOBr/Ti3C2 aerogel spheres for efficient degradation of quinolone antibiotics: Rapid oxygen transfer via triphase interface and effective charges separation by internal electric field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1