Manon Monfort, Julia Buitink, Frank Roeber, Fabien Nogué
{"title":"Genome editing, an opportunity to revive soybean cultivation in Europe","authors":"Manon Monfort, Julia Buitink, Frank Roeber, Fabien Nogué","doi":"10.1111/tpj.17266","DOIUrl":null,"url":null,"abstract":"<p>Soybean (<i>Glycine max</i> Merr.) is the world's most important oilseed crop and its ability to fix atmospheric nitrogen makes it a cornerstone of sustainable agriculture. Despite its importance, Europe relies heavily on imports, leading to environmental and economic vulnerabilities. To address these challenges, the European Union has implemented policies to boost local soybean production, emphasizing sustainable practices and reduced dependency on imports. However, conventional breeding methods are time-consuming and may not keep pace with the rapid environmental and consumer habit changes. Genome-editing technologies, such as CRISPR-Cas, offer precise and efficient tools for developing soybean varieties tailored to European conditions. These technologies can enhance traits related to precocity, stress responses, yield and quality that are essential for adapting to climate change and promoting ecological sustainability. This review explores the integration of genome editing (GE) in soybean breeding, highlighting its potential in advancing the agroecological transition in Europe. By having a clear regulation and enhancing breeding efforts, GE can significantly contribute to developing resilient and sustainable soybean varieties, fostering a competitive and environmentally friendly European agriculture.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 4","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17266","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17266","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soybean (Glycine max Merr.) is the world's most important oilseed crop and its ability to fix atmospheric nitrogen makes it a cornerstone of sustainable agriculture. Despite its importance, Europe relies heavily on imports, leading to environmental and economic vulnerabilities. To address these challenges, the European Union has implemented policies to boost local soybean production, emphasizing sustainable practices and reduced dependency on imports. However, conventional breeding methods are time-consuming and may not keep pace with the rapid environmental and consumer habit changes. Genome-editing technologies, such as CRISPR-Cas, offer precise and efficient tools for developing soybean varieties tailored to European conditions. These technologies can enhance traits related to precocity, stress responses, yield and quality that are essential for adapting to climate change and promoting ecological sustainability. This review explores the integration of genome editing (GE) in soybean breeding, highlighting its potential in advancing the agroecological transition in Europe. By having a clear regulation and enhancing breeding efforts, GE can significantly contribute to developing resilient and sustainable soybean varieties, fostering a competitive and environmentally friendly European agriculture.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.