{"title":"Simultaneous Energy, Fresh Water, and Biogas Production Process Utilizing Solar Thermal and Sewage Sludge","authors":"Milad Imandoust, Seyed Taher Kermani Alghorayshi, Solmaz Abbasi, Mehran Seifollahi, Rahim Zahedi","doi":"10.1002/ese3.1980","DOIUrl":null,"url":null,"abstract":"<p>Minimizing the detrimental effects of global warming and pollution from fossil fuel consumption is essential to meet the growing demand for energy and fresh water, making it imperative to adopt renewable energy alternatives. The integration of solar energy and biomass in hybrid renewable energy systems will grow in importance. The proposed study introduces a new design that facilitates the simultaneous production of power, biogas, and fresh water in a continuous process. The present research aims to tackle the challenge of utilizing multiple renewable energy sources, such as solar and biomass, to generate power, fuel, and fresh water. To achieve this, a 4-stage multi-effect desalination system will be employed for desalinating seawater. This paper discusses combining hybrid solar and biomass feedstocks to address the challenge of maintaining consistent energy production in renewable solar power plants at night, when there is no sunlight. The challenge at hand involves assessing various factors using ASPEN Plus software, such as solar heat transfer fluid (SHTF), sewage sludge flowrates, biogas production, output waste stream of gasification reactor, power generation, and freshwater production. Additionally, the payback period for this project is approximately 4.8 years, with a net present value (NPV) of around 560 million dollars. By performing a sensitivity analysis, the viability of the designed process and the quality of the resulting products were effectively demonstrated. From the gasification process, an impressive 76.8586 tons per hour of syngas, composed of carbon monoxide and hydrogen, was generated. Additionally, the power output of the system reached 34.547 MW, while simultaneously producing approximately 783 m<sup>3</sup>/h of fresh water. Due to efficient energy recovery throughout the entire process, only 25 MW of solar power was required. Despite efforts, fresh water production was only operating at a 50% productivity level. To supply the required solar energy during daylight hours, a total of 38,908 square meters of Parabolic trough collector (PTC) was necessary. According to the environmental analysis, the primary concern is the detrimental effect of pollution on human health. Solar collectors and sea water desalination units account for over 95% of the pollution. The revelation showed that combining solar and biomass energy resources could provide a sustainable solution to meet the rising demand for fresh water, electricity, and fuel.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 2","pages":"530-550"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1980","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1980","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Minimizing the detrimental effects of global warming and pollution from fossil fuel consumption is essential to meet the growing demand for energy and fresh water, making it imperative to adopt renewable energy alternatives. The integration of solar energy and biomass in hybrid renewable energy systems will grow in importance. The proposed study introduces a new design that facilitates the simultaneous production of power, biogas, and fresh water in a continuous process. The present research aims to tackle the challenge of utilizing multiple renewable energy sources, such as solar and biomass, to generate power, fuel, and fresh water. To achieve this, a 4-stage multi-effect desalination system will be employed for desalinating seawater. This paper discusses combining hybrid solar and biomass feedstocks to address the challenge of maintaining consistent energy production in renewable solar power plants at night, when there is no sunlight. The challenge at hand involves assessing various factors using ASPEN Plus software, such as solar heat transfer fluid (SHTF), sewage sludge flowrates, biogas production, output waste stream of gasification reactor, power generation, and freshwater production. Additionally, the payback period for this project is approximately 4.8 years, with a net present value (NPV) of around 560 million dollars. By performing a sensitivity analysis, the viability of the designed process and the quality of the resulting products were effectively demonstrated. From the gasification process, an impressive 76.8586 tons per hour of syngas, composed of carbon monoxide and hydrogen, was generated. Additionally, the power output of the system reached 34.547 MW, while simultaneously producing approximately 783 m3/h of fresh water. Due to efficient energy recovery throughout the entire process, only 25 MW of solar power was required. Despite efforts, fresh water production was only operating at a 50% productivity level. To supply the required solar energy during daylight hours, a total of 38,908 square meters of Parabolic trough collector (PTC) was necessary. According to the environmental analysis, the primary concern is the detrimental effect of pollution on human health. Solar collectors and sea water desalination units account for over 95% of the pollution. The revelation showed that combining solar and biomass energy resources could provide a sustainable solution to meet the rising demand for fresh water, electricity, and fuel.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.