{"title":"Active Vibration Isolation Platforms for Wafer Front Opening Unified Pod Transporting Carts Under Raised Floor Irregularities in Industrial Factories","authors":"Chien-Liang Lee, Yung-Tsang Chen, Yen-Po Wang, Lap-Loi Chung, Meng-Chieh Liu, Li-Yen Lu","doi":"10.1155/stc/2134915","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study was conducted to examine the vibration control performance of the active isolation platform (AIP) implemented on the cart table (CT) of a moving front opening unified pod (FOUP) transporting cart to prevent damage to fragile silicon wafers during transportation across different buildings in semiconductor fabs. Additionally, the equation of motion for the proposed AIP–cart system simulated by a full vehicle model under raised floor irregularities was derived. Moreover, the direct output feedback control algorithm was used to determine the optimal feedback gain matrix for calculating the active control forces of the AIP. Furthermore, the dynamic time histories of the proposed model under raised floor irregularities were analyzed by the discrete–time state–space procedure (SSP), and the numerical simulation results revealed that AIP effectively suppressed the bouncing (or vertical) acceleration with a reduction of > 90% at FOUP locations to 2.37 m/s<sup>2</sup> (< 9.81 m/s<sup>2</sup> or 1.0 g, the bouncing acceleration threshold) to prevent FOUPs (or fragile silicon wafers) from bouncing away from the CT without AIP, causing damages to the wafers via collisions. Moreover, AIP greatly reduced the pitching angular rotation with a reduction of > 65% to prevent the sliding of FOUP-stored wafers from the supporting slots inside FOUPs when the FOUP-transporting cart traversed through a larger bump between the expansion joints. The flexible AIP that demanded less control force (27.08 N) significantly isolated the high-frequency response transmitted from the CT and effectively enhanced its damping ratio to suppress the resonance low-frequency response induced by intermittent perforated floor irregularities or bumps. From a practical point of view, the proposed AIP scheme implemented on CT can be adopted for protecting jumping- or sliding-induced collision damages to wafers (or similar fragile products) transported by carts to reduce huge economic losses in industry.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/2134915","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/2134915","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to examine the vibration control performance of the active isolation platform (AIP) implemented on the cart table (CT) of a moving front opening unified pod (FOUP) transporting cart to prevent damage to fragile silicon wafers during transportation across different buildings in semiconductor fabs. Additionally, the equation of motion for the proposed AIP–cart system simulated by a full vehicle model under raised floor irregularities was derived. Moreover, the direct output feedback control algorithm was used to determine the optimal feedback gain matrix for calculating the active control forces of the AIP. Furthermore, the dynamic time histories of the proposed model under raised floor irregularities were analyzed by the discrete–time state–space procedure (SSP), and the numerical simulation results revealed that AIP effectively suppressed the bouncing (or vertical) acceleration with a reduction of > 90% at FOUP locations to 2.37 m/s2 (< 9.81 m/s2 or 1.0 g, the bouncing acceleration threshold) to prevent FOUPs (or fragile silicon wafers) from bouncing away from the CT without AIP, causing damages to the wafers via collisions. Moreover, AIP greatly reduced the pitching angular rotation with a reduction of > 65% to prevent the sliding of FOUP-stored wafers from the supporting slots inside FOUPs when the FOUP-transporting cart traversed through a larger bump between the expansion joints. The flexible AIP that demanded less control force (27.08 N) significantly isolated the high-frequency response transmitted from the CT and effectively enhanced its damping ratio to suppress the resonance low-frequency response induced by intermittent perforated floor irregularities or bumps. From a practical point of view, the proposed AIP scheme implemented on CT can be adopted for protecting jumping- or sliding-induced collision damages to wafers (or similar fragile products) transported by carts to reduce huge economic losses in industry.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.