Jinpeng Wang, Lianfeng Shan, Jing Hang, Hongyang Li, Yan Meng, Wenhai Cao, Chunjian Gu, Jinna Dai, Lin Tao
{"title":"Development and validation of a novel prediction model for osteoporosis : from serotonin to fat-soluble vitamins.","authors":"Jinpeng Wang, Lianfeng Shan, Jing Hang, Hongyang Li, Yan Meng, Wenhai Cao, Chunjian Gu, Jinna Dai, Lin Tao","doi":"10.1302/2046-3758.142.BJR-2023-0409.R2","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>We aimed to develop and validate a novel prediction model for osteoporosis based on serotonin, fat-soluble vitamins, and bone turnover markers to improve prediction accuracy of osteoporosis.</p><p><strong>Methods: </strong>Postmenopausal women aged 55 to 65 years were recruited and divided into three groups based on DXA (normal, osteopenia, and osteoporosis). A total of 109 participants were included in this study and split into healthy (39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis groups (35/109, 32.1%). Serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers of participants were measured. Stepwise discriminant analysis was performed to identify efficient predictors for osteoporosis. The prediction model was developed based on Bayes and Fisher's discriminant functions, and validated via leave-one-out cross-validation. Normal and empirical volume under the receiver operating characteristic (ROC) surface (VUS) tests were used to evaluate predictive effects of variables in the prediction model.</p><p><strong>Results: </strong>Significant variables including oestrogen (E2), total procollagen type 1 amino-terminal propeptide (TP1NP), parathyroid hormone (PTH), BMI, vitamin K, serotonin, osteocalcin (OSTEOC), vitamin A, and vitamin D3 were used for the development of the prediction model. The training accuracy for normal, osteopenia, and osteoporosis is 74.4% (29/39), 80.0% (28/35), and 85.7% (30/35), respectively, while the total training accuracy is 79.8% (87/109). The internal validation showed excellent performance with 72.5% testing accuracy (72/109). Among these variables, serotonin and vitamin K exert important roles in the prediction of osteoporosis.</p><p><strong>Conclusion: </strong>We successfully developed and validated a novel prediction model for osteoporosis based on serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers. In addition, interactive communication between serotonin and fat-soluble vitamins was observed to be critical for bone health in this study.</p>","PeriodicalId":9074,"journal":{"name":"Bone & Joint Research","volume":"14 2","pages":"111-123"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1302/2046-3758.142.BJR-2023-0409.R2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: We aimed to develop and validate a novel prediction model for osteoporosis based on serotonin, fat-soluble vitamins, and bone turnover markers to improve prediction accuracy of osteoporosis.
Methods: Postmenopausal women aged 55 to 65 years were recruited and divided into three groups based on DXA (normal, osteopenia, and osteoporosis). A total of 109 participants were included in this study and split into healthy (39/109, 35.8%), osteopenia (35/109, 32.1%), and osteoporosis groups (35/109, 32.1%). Serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers of participants were measured. Stepwise discriminant analysis was performed to identify efficient predictors for osteoporosis. The prediction model was developed based on Bayes and Fisher's discriminant functions, and validated via leave-one-out cross-validation. Normal and empirical volume under the receiver operating characteristic (ROC) surface (VUS) tests were used to evaluate predictive effects of variables in the prediction model.
Results: Significant variables including oestrogen (E2), total procollagen type 1 amino-terminal propeptide (TP1NP), parathyroid hormone (PTH), BMI, vitamin K, serotonin, osteocalcin (OSTEOC), vitamin A, and vitamin D3 were used for the development of the prediction model. The training accuracy for normal, osteopenia, and osteoporosis is 74.4% (29/39), 80.0% (28/35), and 85.7% (30/35), respectively, while the total training accuracy is 79.8% (87/109). The internal validation showed excellent performance with 72.5% testing accuracy (72/109). Among these variables, serotonin and vitamin K exert important roles in the prediction of osteoporosis.
Conclusion: We successfully developed and validated a novel prediction model for osteoporosis based on serum concentrations of serotonin, fat-soluble vitamins, and bone turnover markers. In addition, interactive communication between serotonin and fat-soluble vitamins was observed to be critical for bone health in this study.