Unlocking Dreams and Dreamless Sleep: Machine Learning Classification With Optimal EEG Channels.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioMed Research International Pub Date : 2025-02-10 eCollection Date: 2025-01-01 DOI:10.1155/bmri/3585125
Luis Alfredo Moctezuma, Marta Molinas, Takashi Abe
{"title":"Unlocking Dreams and Dreamless Sleep: Machine Learning Classification With Optimal EEG Channels.","authors":"Luis Alfredo Moctezuma, Marta Molinas, Takashi Abe","doi":"10.1155/bmri/3585125","DOIUrl":null,"url":null,"abstract":"<p><p>Research suggests that dreams play a role in the regulation of emotional processing and memory consolidation; electroencephalography (EEG) is useful for studying them, but manual annotation is time-consuming and prone to bias. This study was aimed at developing an EEG-based machine learning (ML) model to automatically identify dream and dreamless states in sleep. We extracted features from EEG data using common spatial patterns (CSPs) and the discrete wavelet transform (DWT) and used them to classify EEG signals into dream and dreamless states using ML models. To determine the most informative channels for classification, we used the permutation-based channel selection method and the nondominated sorting genetic algorithm II (NSGA-II). We evaluated our proposal using a public dataset that is part of the DREAM project, which was collected from 58 EEG channels during rapid eye movement (REM) and non-REM sleep, while 28 subjects reported dream or dreamless experiences. We achieved accuracies greater than 0.85 to distinguish dream and dreamless states using CSP-based feature extraction combined with <i>k</i>-nearest neighbors (KNN), as well as through multiple combinations of EEG channels identified by channel selection methods. Our findings suggest that as few as 8-10 EEG channels may be sufficient for dream recognition. Excluding one subject at a time during model training revealed challenges in generalizing the models to unseen subjects. Channel selection methods have proven to be effective in selecting relevant subsets of EEG channels to classify dreams and dreamless experiences. Our results demonstrate the feasibility of automatic dream detection and highlight the need to improve ML generalization.</p>","PeriodicalId":9007,"journal":{"name":"BioMed Research International","volume":"2025 ","pages":"3585125"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11832269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMed Research International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/bmri/3585125","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Research suggests that dreams play a role in the regulation of emotional processing and memory consolidation; electroencephalography (EEG) is useful for studying them, but manual annotation is time-consuming and prone to bias. This study was aimed at developing an EEG-based machine learning (ML) model to automatically identify dream and dreamless states in sleep. We extracted features from EEG data using common spatial patterns (CSPs) and the discrete wavelet transform (DWT) and used them to classify EEG signals into dream and dreamless states using ML models. To determine the most informative channels for classification, we used the permutation-based channel selection method and the nondominated sorting genetic algorithm II (NSGA-II). We evaluated our proposal using a public dataset that is part of the DREAM project, which was collected from 58 EEG channels during rapid eye movement (REM) and non-REM sleep, while 28 subjects reported dream or dreamless experiences. We achieved accuracies greater than 0.85 to distinguish dream and dreamless states using CSP-based feature extraction combined with k-nearest neighbors (KNN), as well as through multiple combinations of EEG channels identified by channel selection methods. Our findings suggest that as few as 8-10 EEG channels may be sufficient for dream recognition. Excluding one subject at a time during model training revealed challenges in generalizing the models to unseen subjects. Channel selection methods have proven to be effective in selecting relevant subsets of EEG channels to classify dreams and dreamless experiences. Our results demonstrate the feasibility of automatic dream detection and highlight the need to improve ML generalization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BioMed Research International
BioMed Research International BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
6.70
自引率
0.00%
发文量
1942
审稿时长
19 weeks
期刊介绍: BioMed Research International is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies covering a wide range of subjects in life sciences and medicine. The journal is divided into 55 subject areas.
期刊最新文献
The Allelic and Phenotypic Frequencies of the ABO and Rh Blood Types in Pregnant Women in Addis Ababa, Ethiopia. Knowledge, Attitude, and Practice on Antibiotic Use and Resistance Among Undergraduates, Pokhara Metropolitan, Nepal. Unlocking Dreams and Dreamless Sleep: Machine Learning Classification With Optimal EEG Channels. Seroprevalence of Typhoid Fever and Its Associated Risk Factors Among Clinically Diagnosed Febrile Patients Visiting the Outpatient Department at Debark Hospital and Drug Susceptibility Patterns of Isolates. A Six Years' Trend Analysis of Antimicrobial Resistance Among Bacterial Isolates at Public Health Institute in Amhara Region, Ethiopia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1