Louis-Philippe Picard, Dmitry Pichugin, Shuya Kate Huang, Motasem Suleiman, R Scott Prosser
{"title":"Reducing experimental time through spin-lattice relaxation enhancement via dissolved oxygen.","authors":"Louis-Philippe Picard, Dmitry Pichugin, Shuya Kate Huang, Motasem Suleiman, R Scott Prosser","doi":"10.1007/s10858-024-00457-4","DOIUrl":null,"url":null,"abstract":"<p><p>Large proteins and dilute spin systems within a deuterated background are often characterized by long proton (<sup>1</sup>H) spin-lattice relaxation times (T<sub>1</sub>), which directly impacts the recycle delay and hence, the total experimental time. Dioxygen (O<sub>2</sub>) is a well-known paramagnetic species whose short electronic spin-lattice relaxation time (7.5 ps) contributes to effective spin-lattice relaxation of high gamma nuclei. Oxygen's chemical potential and high diffusivity also allows it to access both the protein exterior and much of the (hydrophobic) interior of the protein. Consequently, at O<sub>2</sub> partial pressures of ~ 10 bar, <sup>1</sup>H and <sup>19</sup>F spin-lattice relaxation rates (R<sub>1</sub>) typically reach 3-5 Hz (versus rates of 0.7-1.0 Hz without oxygen) with comparable line-broadening in protein NMR spectra. Using fluoroacetate dehalogenase (FAcD) a soluble 35 kDa homodimeric enzyme, a nanodisc-stabilized G protein-coupled receptor (A<sub>2A</sub>R), and bovine serum albumin (BSA) as test cases, a 3-fold savings in time was achieved in acquiring <sup>1</sup>H-<sup>15</sup> N HSQC and <sup>19</sup>F NMR spectra, after oxygenation at 9 bar for 24 h. Additional spin-diffusion effects are anticipated to contribute to uniform <sup>1</sup>H spin-lattice relaxation for both solvent-exposed and buried protons, as demonstrated by T<sub>1</sub> relaxation analysis of amides in <sup>15</sup>N-labeled FAcD. Finally, we show that in protein samples dissolved oxygen pre-equilibrated at 9 bar (pO<sub>2</sub>) is largely retained in solution at 20° C or lower, using a standard NMR tube for a period of 3-4 days, thus avoiding the use of specialized apparatus or high-pressure NMR tubes in the spectrometer. The convenience of being able to add or remove the quenching species, while avoiding any complex apparatus in the NMR experiment, makes this a practical tool for both <sup>19</sup>F, <sup>1</sup>H-<sup>13</sup> C, and <sup>1</sup>H-<sup>15</sup> N NMR studies of proteins.</p>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10858-024-00457-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Large proteins and dilute spin systems within a deuterated background are often characterized by long proton (1H) spin-lattice relaxation times (T1), which directly impacts the recycle delay and hence, the total experimental time. Dioxygen (O2) is a well-known paramagnetic species whose short electronic spin-lattice relaxation time (7.5 ps) contributes to effective spin-lattice relaxation of high gamma nuclei. Oxygen's chemical potential and high diffusivity also allows it to access both the protein exterior and much of the (hydrophobic) interior of the protein. Consequently, at O2 partial pressures of ~ 10 bar, 1H and 19F spin-lattice relaxation rates (R1) typically reach 3-5 Hz (versus rates of 0.7-1.0 Hz without oxygen) with comparable line-broadening in protein NMR spectra. Using fluoroacetate dehalogenase (FAcD) a soluble 35 kDa homodimeric enzyme, a nanodisc-stabilized G protein-coupled receptor (A2AR), and bovine serum albumin (BSA) as test cases, a 3-fold savings in time was achieved in acquiring 1H-15 N HSQC and 19F NMR spectra, after oxygenation at 9 bar for 24 h. Additional spin-diffusion effects are anticipated to contribute to uniform 1H spin-lattice relaxation for both solvent-exposed and buried protons, as demonstrated by T1 relaxation analysis of amides in 15N-labeled FAcD. Finally, we show that in protein samples dissolved oxygen pre-equilibrated at 9 bar (pO2) is largely retained in solution at 20° C or lower, using a standard NMR tube for a period of 3-4 days, thus avoiding the use of specialized apparatus or high-pressure NMR tubes in the spectrometer. The convenience of being able to add or remove the quenching species, while avoiding any complex apparatus in the NMR experiment, makes this a practical tool for both 19F, 1H-13 C, and 1H-15 N NMR studies of proteins.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.