Artificial intelligence model for perigastric blood vessel recognition during laparoscopic radical gastrectomy with D2 lymphadenectomy in locally advanced gastric cancer.

IF 3.5 3区 医学 Q1 SURGERY BJS Open Pub Date : 2024-12-30 DOI:10.1093/bjsopen/zrae158
Guanjian Chen, Yequan Xie, Bin Yang, JiaNan Tan, Guangyu Zhong, Lin Zhong, Shengning Zhou, Fanghai Han
{"title":"Artificial intelligence model for perigastric blood vessel recognition during laparoscopic radical gastrectomy with D2 lymphadenectomy in locally advanced gastric cancer.","authors":"Guanjian Chen, Yequan Xie, Bin Yang, JiaNan Tan, Guangyu Zhong, Lin Zhong, Shengning Zhou, Fanghai Han","doi":"10.1093/bjsopen/zrae158","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radical gastrectomy with D2 lymphadenectomy is standard surgical protocol for locally advanced gastric cancer. The surgical experience and skill in recognizing blood vessels and performing lymph node dissection differ between surgeons, which may influence intraoperative safety and postoperative oncological outcomes. Hence, the aim of this study was to develop an accurate and real-time deep learning-based perigastric blood vessel recognition model to assist intraoperative performance.</p><p><strong>Methods: </strong>This was a retrospective study assessing videos of laparoscopic radical gastrectomy with D2 lymphadenectomy. The model was developed based on DeepLabv3+. Static performance was evaluated using precision, recall, intersection over union, and F1 score. Dynamic performance was verified using 15 intraoperative videos.</p><p><strong>Results: </strong>The study involved 2460 images captured from 116 videos. Mean(s.d.) precision, recall, intersection over union, and F1 score for the artery were 0.9442(0.0059), 0.9099(0.0163), 0.8635(0.0146), and 0.9267(0.0084) respectively. Mean(s.d.) precision, recall, intersection over union, and F1 score for the vein were 0.9349(0.0064), 0.8491(0.0259), 0.8015(0.0206), and 0.8897(0.0127) respectively. The model also performed well in recognizing perigastric blood vessels in 15 dynamic test videos. Intersection over union and F1 score in difficult image conditions, such as bleeding or massive surgical smoke in the field of view, were reduced, while images from obese patients resulted in satisfactory vessel recognition.</p><p><strong>Conclusion: </strong>The model recognized the perigastric blood vessels with satisfactory predictive value in the test set and performed well in the dynamic videos. It therefore shows promise with regard to increasing safety and decreasing accidental bleeding during laparoscopic gastrectomy.</p>","PeriodicalId":9028,"journal":{"name":"BJS Open","volume":"9 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11833313/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJS Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/bjsopen/zrae158","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radical gastrectomy with D2 lymphadenectomy is standard surgical protocol for locally advanced gastric cancer. The surgical experience and skill in recognizing blood vessels and performing lymph node dissection differ between surgeons, which may influence intraoperative safety and postoperative oncological outcomes. Hence, the aim of this study was to develop an accurate and real-time deep learning-based perigastric blood vessel recognition model to assist intraoperative performance.

Methods: This was a retrospective study assessing videos of laparoscopic radical gastrectomy with D2 lymphadenectomy. The model was developed based on DeepLabv3+. Static performance was evaluated using precision, recall, intersection over union, and F1 score. Dynamic performance was verified using 15 intraoperative videos.

Results: The study involved 2460 images captured from 116 videos. Mean(s.d.) precision, recall, intersection over union, and F1 score for the artery were 0.9442(0.0059), 0.9099(0.0163), 0.8635(0.0146), and 0.9267(0.0084) respectively. Mean(s.d.) precision, recall, intersection over union, and F1 score for the vein were 0.9349(0.0064), 0.8491(0.0259), 0.8015(0.0206), and 0.8897(0.0127) respectively. The model also performed well in recognizing perigastric blood vessels in 15 dynamic test videos. Intersection over union and F1 score in difficult image conditions, such as bleeding or massive surgical smoke in the field of view, were reduced, while images from obese patients resulted in satisfactory vessel recognition.

Conclusion: The model recognized the perigastric blood vessels with satisfactory predictive value in the test set and performed well in the dynamic videos. It therefore shows promise with regard to increasing safety and decreasing accidental bleeding during laparoscopic gastrectomy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BJS Open
BJS Open SURGERY-
CiteScore
6.00
自引率
3.20%
发文量
144
期刊最新文献
Colonic resection and stoma formation due to chronic diverticular disease: nationwide population-based cohort study. Laparoscopic versus open repair of perforated peptic ulcer: systematic scoping review and in-depth evaluation of existing evidence. Healthcare metaverse in surgery: scoping review. Circulating large extracellular vesicles as diagnostic biomarkers of indeterminate thyroid nodules: multi-platform omics analysis. Evolution of quality of life, anxiety, and depression over time in patients with an abdominal aortic aneurysm approaching the surgical threshold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1