Bahar Morshedi, Mehdi Esfandyari-Manesh, Fatemeh Atyabi, Mohammad Hossein Ghahremani, Rassoul Dinarvand
{"title":"Local delivery of ibrutinib by folate receptor-mediated targeting PLGA-PEG nanoparticles to glioblastoma multiform: <i>in vitro</i> and <i>in vivo</i> studies.","authors":"Bahar Morshedi, Mehdi Esfandyari-Manesh, Fatemeh Atyabi, Mohammad Hossein Ghahremani, Rassoul Dinarvand","doi":"10.1080/1061186X.2025.2468749","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is a widespread and life-threatening kind of brain cancer, which has a high mortality rate. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, irreversibly adheres to a conserved cysteine residue of two enzymes BTK and BMX, inhibiting their kinase activities, which leads to suppression of the growth of glioma cells. This study synthesised PLGA-PEG-folate (PPF) polymer and subsequently encapsulated ibrutinib within PPF nanoparticles (IBT-PPF-NPs). H NMR spectra confirmed the synthesis of PPF polymer. The efficiency of IBT-PPF-NPs was 97 ± 2.26% with 8.8 ± 0.2% drug loading. The particle size was 208 ± 4.8 nm. The IC<sub>50</sub> value of free ibrutinib, IB-PPF-NPs and ibrutinib encapsulated in PLGA NPs (IB-P-NPs) was 10.2, 7.6 and 10.13 µM in C6 cell lines, whereas in U-87 MG cells was 24.4, 16 and 25.2 µM, respectively. The cellular uptake of FITC-PPF-NPs increased from 47.6% to 90.3% in C6 cells and from 55% to 97.3% in U-87 MG cells compared to FITC-P-NPs. The <i>in vivo</i> results indicate a significant reduction in tumour size in treatment groups in comparison to control groups, while the group that received the intratumoural injection of IB-PPF-NPs exhibited a greater reduction. The folate-targeting agent enhances the nanoparticles' effectiveness by promoting their uptake through the endocytosis pathway.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"1-16"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2468749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is a widespread and life-threatening kind of brain cancer, which has a high mortality rate. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, irreversibly adheres to a conserved cysteine residue of two enzymes BTK and BMX, inhibiting their kinase activities, which leads to suppression of the growth of glioma cells. This study synthesised PLGA-PEG-folate (PPF) polymer and subsequently encapsulated ibrutinib within PPF nanoparticles (IBT-PPF-NPs). H NMR spectra confirmed the synthesis of PPF polymer. The efficiency of IBT-PPF-NPs was 97 ± 2.26% with 8.8 ± 0.2% drug loading. The particle size was 208 ± 4.8 nm. The IC50 value of free ibrutinib, IB-PPF-NPs and ibrutinib encapsulated in PLGA NPs (IB-P-NPs) was 10.2, 7.6 and 10.13 µM in C6 cell lines, whereas in U-87 MG cells was 24.4, 16 and 25.2 µM, respectively. The cellular uptake of FITC-PPF-NPs increased from 47.6% to 90.3% in C6 cells and from 55% to 97.3% in U-87 MG cells compared to FITC-P-NPs. The in vivo results indicate a significant reduction in tumour size in treatment groups in comparison to control groups, while the group that received the intratumoural injection of IB-PPF-NPs exhibited a greater reduction. The folate-targeting agent enhances the nanoparticles' effectiveness by promoting their uptake through the endocytosis pathway.
期刊介绍:
Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs.
Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.