Pharmacokinetics of primary atractyligenin metabolites after coffee consumption.

IF 4.8 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Nutritional Biochemistry Pub Date : 2025-02-15 DOI:10.1016/j.jnutbio.2025.109869
Roman Lang, Melanie Haas, Barbara Danzer, Veronika Somoza, Thomas Skurk
{"title":"Pharmacokinetics of primary atractyligenin metabolites after coffee consumption.","authors":"Roman Lang, Melanie Haas, Barbara Danzer, Veronika Somoza, Thomas Skurk","doi":"10.1016/j.jnutbio.2025.109869","DOIUrl":null,"url":null,"abstract":"<p><p>Coffee brew is an integral part of the individual diet worldwide. Roasted coffee contains numerous bioactive substances whose significance for health is investigated in nutritional studies. Food biomarkers are recommended to correlate coffee consumption and health effects in the most unbiased way possible. Metabolites of atractyligenin derivatives from roasted coffee have been suggested as candidate analytes indicating coffee consumption. UHPLC-MS/MS analysis revealed that atractyligenin (1), 2-O-β-D-glucosylatractyligenin and 3'-O-β-D-glucosyl-2'-O-isovaleryl-2-O-β-D-glucosylatractyligenin were extracted into coffee brew. Their concentrations in filtered and unfiltered coffee did not differ significantly, suggesting independence from the preparation method. In a coffee intervention study (n=12, female/male 6/6), atractyligenin metabolites were not detectable in plasma after three days of coffee abstinence. After coffee, atractyligenin (1) and atractyligenin-19-O-D-glucuronide (M1) were the quantitatively dominant atractyligenin metabolites in plasma and showed two peaks each after 0.5 and 10 h, respectively. Half-lives after the first cmax in plasma were ∼0.31 h. 1 and M1 were detectable in plasma, indicating coffee consumption for up to 24 h after one serving. Within 10 h, ∼13.7% of the atractyligenin glycosides supplied by coffee brew were excreted in urine as metabolites 1 and M1. Metabolites 2β-hydroxy-15-oxoatractylan-4α-carboxy-19-O-β-d-glucuronide (M2) and 2β-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-β-d-glucuronide (M3) were detected in only some samples and appeared unreliable as indicators for coffee consumption. No concentration differences between female and male study participants were observed in plasma and urine. In conclusion atractyligenin and its 19-O-β-D-glucuronide are promising markers of Arabica coffee consumption in plasma and urine for both men and women, independent of the brewing method.</p>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":" ","pages":"109869"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jnutbio.2025.109869","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coffee brew is an integral part of the individual diet worldwide. Roasted coffee contains numerous bioactive substances whose significance for health is investigated in nutritional studies. Food biomarkers are recommended to correlate coffee consumption and health effects in the most unbiased way possible. Metabolites of atractyligenin derivatives from roasted coffee have been suggested as candidate analytes indicating coffee consumption. UHPLC-MS/MS analysis revealed that atractyligenin (1), 2-O-β-D-glucosylatractyligenin and 3'-O-β-D-glucosyl-2'-O-isovaleryl-2-O-β-D-glucosylatractyligenin were extracted into coffee brew. Their concentrations in filtered and unfiltered coffee did not differ significantly, suggesting independence from the preparation method. In a coffee intervention study (n=12, female/male 6/6), atractyligenin metabolites were not detectable in plasma after three days of coffee abstinence. After coffee, atractyligenin (1) and atractyligenin-19-O-D-glucuronide (M1) were the quantitatively dominant atractyligenin metabolites in plasma and showed two peaks each after 0.5 and 10 h, respectively. Half-lives after the first cmax in plasma were ∼0.31 h. 1 and M1 were detectable in plasma, indicating coffee consumption for up to 24 h after one serving. Within 10 h, ∼13.7% of the atractyligenin glycosides supplied by coffee brew were excreted in urine as metabolites 1 and M1. Metabolites 2β-hydroxy-15-oxoatractylan-4α-carboxy-19-O-β-d-glucuronide (M2) and 2β-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-β-d-glucuronide (M3) were detected in only some samples and appeared unreliable as indicators for coffee consumption. No concentration differences between female and male study participants were observed in plasma and urine. In conclusion atractyligenin and its 19-O-β-D-glucuronide are promising markers of Arabica coffee consumption in plasma and urine for both men and women, independent of the brewing method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nutritional Biochemistry
Journal of Nutritional Biochemistry 医学-生化与分子生物学
CiteScore
9.50
自引率
3.60%
发文量
237
审稿时长
68 days
期刊介绍: Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology. Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.
期刊最新文献
Pharmacokinetics of primary atractyligenin metabolites after coffee consumption. In Vivo Metabolic Effects of Naringin in Reducing Oxidative Stress and Protecting the Vascular Endothelium in Dyslipidemic Mice. Ligusticum cycloprolactam ameliorates hyperuricemic nephropathy through inhibition of TLR4/NF-κB signaling. Quinoa protein and its hydrolysate improve the fatigue resistance of mice: A potential mechanism to relieve oxidative stress and inflammation and improve energy metabolism. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1