Comprehensive Analysis Identifies Hsa_circ_0058191 as a Potential Drug Resistance Target in Multiple Myeloma.

IF 2.7 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY OncoTargets and therapy Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.2147/OTT.S505074
Huiye Yang, Jie Zhu, Xiaotao Wang
{"title":"Comprehensive Analysis Identifies Hsa_circ_0058191 as a Potential Drug Resistance Target in Multiple Myeloma.","authors":"Huiye Yang, Jie Zhu, Xiaotao Wang","doi":"10.2147/OTT.S505074","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Multiple Myeloma (MM) is the second most common hematologic malignancy, which exhibits strong resistance to bortezomib, the first-line treatment. Circular RNAs (circRNAs) are increasingly considered as important drivers of drug resistance across various cancers, but their roles in multiple myeloma are not well understood.</p><p><strong>Aim: </strong>To investigate and identify potential circRNA targets and their roles in the mechanisms of bortezomib resistance.</p><p><strong>Methods: </strong>Bortezomib-resistant MM patient-specific circRNAs were screened using Arraystar circRNA microarrays. The MM circRNA dataset from the GEO database was analyzed with GEO2R to identify candidate circRNAs associated with MM progression and drug resistance. CircRNA-forming and loop-forming sites, along with their structures, were identified via Sanger sequencing. The identified circRNA was validated by qRT-PCR in MM patients with and without bortezomib resistance. Bioinformatic analysis through CircInteractome was conducted to predict potential miRNA and RBP binding for the core circRNAs. Metascape was employed to perform RBP pathway analysis to identify specific biological processes in circRNAs.</p><p><strong>Results: </strong>The hsa_circ_0058191 was found to be overexpressed in bortezomib-resistant MM patient samples, suggesting its pivotal role in drug resistance mechanisms. The interaction of hsa_circ_0058191 with miR-660 and AGO2 as determined through bioinformatic predictions, indicated that it regulates RNA modification and mRNA regulation pathways. These molecular interactions expand our understanding of the mechanisms of drug resistance in multiple myeloma.</p><p><strong>Conclusion: </strong>This study identified the role of hsa_circ_0058191 in the development of drug resistance in MM, which provides a theoretical foundation for designing potential therapeutic strategies to prevent drug resistance.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"18 ","pages":"225-231"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S505074","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Multiple Myeloma (MM) is the second most common hematologic malignancy, which exhibits strong resistance to bortezomib, the first-line treatment. Circular RNAs (circRNAs) are increasingly considered as important drivers of drug resistance across various cancers, but their roles in multiple myeloma are not well understood.

Aim: To investigate and identify potential circRNA targets and their roles in the mechanisms of bortezomib resistance.

Methods: Bortezomib-resistant MM patient-specific circRNAs were screened using Arraystar circRNA microarrays. The MM circRNA dataset from the GEO database was analyzed with GEO2R to identify candidate circRNAs associated with MM progression and drug resistance. CircRNA-forming and loop-forming sites, along with their structures, were identified via Sanger sequencing. The identified circRNA was validated by qRT-PCR in MM patients with and without bortezomib resistance. Bioinformatic analysis through CircInteractome was conducted to predict potential miRNA and RBP binding for the core circRNAs. Metascape was employed to perform RBP pathway analysis to identify specific biological processes in circRNAs.

Results: The hsa_circ_0058191 was found to be overexpressed in bortezomib-resistant MM patient samples, suggesting its pivotal role in drug resistance mechanisms. The interaction of hsa_circ_0058191 with miR-660 and AGO2 as determined through bioinformatic predictions, indicated that it regulates RNA modification and mRNA regulation pathways. These molecular interactions expand our understanding of the mechanisms of drug resistance in multiple myeloma.

Conclusion: This study identified the role of hsa_circ_0058191 in the development of drug resistance in MM, which provides a theoretical foundation for designing potential therapeutic strategies to prevent drug resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
OncoTargets and therapy
OncoTargets and therapy BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ONCOLOGY
CiteScore
9.70
自引率
0.00%
发文量
221
审稿时长
1 months
期刊介绍: OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer. The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype. Specific topics covered by the journal include: -Novel therapeutic targets and innovative agents -Novel therapeutic regimens for improved benefit and/or decreased side effects -Early stage clinical trials Further considerations when submitting to OncoTargets and Therapy: -Studies containing in vivo animal model data will be considered favorably. -Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines. -Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples. -Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up. -Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up. -Single nucleotide polymorphism (SNP) studies will not be considered.
期刊最新文献
Profiling the Tumor Immune Microenvironment of HPV-Associated Base of Tongue Squamous Cell Carcinoma. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Comprehensive Analysis Identifies Hsa_circ_0058191 as a Potential Drug Resistance Target in Multiple Myeloma. A Comprehensive Review of Advances in Molecular Mechanisms and Targeted Therapies for the Specific Type of Cystic Lung Cancer. Crosstalk of SPINK4 Expression With Patient Mortality, Immunotherapy and Metastasis in Pan-Cancer Based on Integrated Multi-Omics Analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1