Eduard Machado López, Aquiles Darghan, Víctor Julio Flórez Roncancio
{"title":"Post-harvest evaluation of the effect of foliar and edaphic applications of silicon in pre-harvest of rose cv. 'Brighton'.","authors":"Eduard Machado López, Aquiles Darghan, Víctor Julio Flórez Roncancio","doi":"10.1080/15592324.2025.2465234","DOIUrl":null,"url":null,"abstract":"<p><p>The longevity of the rose stem is often affected by the rate of respiration and the evolution in ethylene production, which also favors the development of <i>Botrytis</i>. Silicon is involved in plant defense, and its application could be a strategy to improve disease control. This research evaluated the effect of foliar and edaphic applications of silicon on the life of the Brighton rose using three sources of liquid silicon applied every 2 weeks in three foliar and edaphic conditions and one control. After harvest, the fresh mass loss, ethylene concentration, O<sub>2</sub> consumption and CO<sub>2</sub> evolution were measured. The number of fallen petals was counted, and the severity of the Botrytis infection was evaluated. The biomass loss of the floral stem was analyzed with profile analysis. For the evaluation of the change in values of O<sub>2</sub>, CO<sub>2</sub> and ethylene, a multivariate semiparametric analysis of variance analysis was used and the generalized estimating equation methodology for the longitudinal binary response of severity. It was found that the soil treatment with lower potassium and soluble silicon was associated with a decrease in ethylene concentration as well as also turned out to be the one that best controlled <i>Botrytis</i> in post-harvest.</p>","PeriodicalId":94172,"journal":{"name":"Plant signaling & behavior","volume":"20 1","pages":"2465234"},"PeriodicalIF":0.0000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant signaling & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15592324.2025.2465234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The longevity of the rose stem is often affected by the rate of respiration and the evolution in ethylene production, which also favors the development of Botrytis. Silicon is involved in plant defense, and its application could be a strategy to improve disease control. This research evaluated the effect of foliar and edaphic applications of silicon on the life of the Brighton rose using three sources of liquid silicon applied every 2 weeks in three foliar and edaphic conditions and one control. After harvest, the fresh mass loss, ethylene concentration, O2 consumption and CO2 evolution were measured. The number of fallen petals was counted, and the severity of the Botrytis infection was evaluated. The biomass loss of the floral stem was analyzed with profile analysis. For the evaluation of the change in values of O2, CO2 and ethylene, a multivariate semiparametric analysis of variance analysis was used and the generalized estimating equation methodology for the longitudinal binary response of severity. It was found that the soil treatment with lower potassium and soluble silicon was associated with a decrease in ethylene concentration as well as also turned out to be the one that best controlled Botrytis in post-harvest.