Optimal design of a wheelchair-mounted robotic arm for activities of daily living.

IF 1.9 4区 医学 Q2 REHABILITATION Disability and Rehabilitation-Assistive Technology Pub Date : 2025-02-18 DOI:10.1080/17483107.2025.2459890
Javier Dario Sanjuan De Caro, Md Samiul Haque Sunny, Gabriela Davila Albor, Tanvir Ahmed, Md Mahbubur Rahman, Md Ishrak Islam Zarif, Asif Al Zubayer Swapnil, Inga Wang, Katie Schultz, Sheikh Iqbal Ahamed, Mohammad H Rahman
{"title":"Optimal design of a wheelchair-mounted robotic arm for activities of daily living.","authors":"Javier Dario Sanjuan De Caro, Md Samiul Haque Sunny, Gabriela Davila Albor, Tanvir Ahmed, Md Mahbubur Rahman, Md Ishrak Islam Zarif, Asif Al Zubayer Swapnil, Inga Wang, Katie Schultz, Sheikh Iqbal Ahamed, Mohammad H Rahman","doi":"10.1080/17483107.2025.2459890","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The increasing prevalence of upper limb dysfunctions due to stroke, spinal cord injuries, and multiple sclerosis presents a critical challenge in assistive technology: designing robotic arms that are both energy‑efficient and capable of effectively performing activities of daily living (ADLs). This challenge is exacerbated by the need to ensure these devices are accessible for non‑expert users and can operate within the spatial constraints typical of everyday environments. Despite advancements in wheelchair‑mounted robotic arms (WMRAs), existing designs do not achieve an optimal balance-minimizing energy consumption and space while maximizing kinematic performance and workspace. Most robotic arms can perform a range of ADLs, but they do not account for outdoor environments where energy conservation is crucial. Furthermore, the need for WMRAs to be compact in idle configurations-essential for navigating through doors or between aisles-adds another layer of complexity to their design. This paper addresses these multifaceted design challenges by proposing a novel objective function to optimize the link lengths of WMRAs, aiming to reduce energy consumption without compromising the robots' operational capabilities.</p><p><strong>Materials and methods: </strong>To achieve this optimization, the scatter search method was employed, incorporating considerations of collision and singularity avoidance while ensuring the arm remains compact when not in use. The proposed design was evaluated through simulations and experimental validation with both healthy subjects and individuals with lower limb dysfunctions.</p><p><strong>Results and conclusions: </strong>The optimized WMRA demonstrated significant improvements in energy efficiency and spatial adaptability while maintaining the required kinematic performance for ADLs. The validation process confirmed the practical applicability of the proposed design, highlighting its potential to enhance mobility and independence for individuals with upper limb impairments. This study contributes to the field of disability and rehabilitation by providing a structured approach to designing assistive robotic arms that better align with real‑world constraints and user needs.</p>","PeriodicalId":47806,"journal":{"name":"Disability and Rehabilitation-Assistive Technology","volume":" ","pages":"1-18"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disability and Rehabilitation-Assistive Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17483107.2025.2459890","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"REHABILITATION","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The increasing prevalence of upper limb dysfunctions due to stroke, spinal cord injuries, and multiple sclerosis presents a critical challenge in assistive technology: designing robotic arms that are both energy‑efficient and capable of effectively performing activities of daily living (ADLs). This challenge is exacerbated by the need to ensure these devices are accessible for non‑expert users and can operate within the spatial constraints typical of everyday environments. Despite advancements in wheelchair‑mounted robotic arms (WMRAs), existing designs do not achieve an optimal balance-minimizing energy consumption and space while maximizing kinematic performance and workspace. Most robotic arms can perform a range of ADLs, but they do not account for outdoor environments where energy conservation is crucial. Furthermore, the need for WMRAs to be compact in idle configurations-essential for navigating through doors or between aisles-adds another layer of complexity to their design. This paper addresses these multifaceted design challenges by proposing a novel objective function to optimize the link lengths of WMRAs, aiming to reduce energy consumption without compromising the robots' operational capabilities.

Materials and methods: To achieve this optimization, the scatter search method was employed, incorporating considerations of collision and singularity avoidance while ensuring the arm remains compact when not in use. The proposed design was evaluated through simulations and experimental validation with both healthy subjects and individuals with lower limb dysfunctions.

Results and conclusions: The optimized WMRA demonstrated significant improvements in energy efficiency and spatial adaptability while maintaining the required kinematic performance for ADLs. The validation process confirmed the practical applicability of the proposed design, highlighting its potential to enhance mobility and independence for individuals with upper limb impairments. This study contributes to the field of disability and rehabilitation by providing a structured approach to designing assistive robotic arms that better align with real‑world constraints and user needs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
13.60%
发文量
128
期刊最新文献
Impact of holding a badminton racket on spatiotemporal parameters during manual wheelchair propulsion based on forward and backward propulsion. Optimal design of a wheelchair-mounted robotic arm for activities of daily living. Leveraging AI and customer reviews to evaluate technology used by people with disabilities. Multi-faceted sensory substitution using wearable technology for curb alerting: a pilot investigation with persons with blindness and low vision. Are the non-profit organizations being an effective way to empower and integrate children with special needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1