CircRNA Itm2b induces oxidative stress via the interaction with Sirt1-Nox4 to aggravate sleep disturbances after traumatic brain injury.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell and Bioscience Pub Date : 2025-02-17 DOI:10.1186/s13578-025-01353-6
Jiayuanyuan Fu, Mengran Du, Biying Wu, Chenrui Wu, Xin Li, Weilin Tan, Xuekang Huang, Ziyu Zhu, Jie Zhang, Zheng Bu Liao
{"title":"CircRNA Itm2b induces oxidative stress via the interaction with Sirt1-Nox4 to aggravate sleep disturbances after traumatic brain injury.","authors":"Jiayuanyuan Fu, Mengran Du, Biying Wu, Chenrui Wu, Xin Li, Weilin Tan, Xuekang Huang, Ziyu Zhu, Jie Zhang, Zheng Bu Liao","doi":"10.1186/s13578-025-01353-6","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep disorders (SD) are common sequelae following traumatic brain injury (TBI) and may be linked to mitochondrial oxidative stress dysregulation after TBI. Increasing evidence showed that circRNAs play crucial roles in nervous system diseases. However, the involvement of circRNAs in sleep disturbances after TBI is not characterized. In this study, differentially expressed circRNAs were identified by RNA sequencing. Sleep quality in TBI patients was assessed through sleep scales and electroencephalograms. Further experiments were conducted to investigate the role of circItm2b. We found that circItm2b was elevated and involved sleep disorder in TBI patients. Over-expression of circItm2b might aggravate sleep disturbances in mice after TBI. Mechanically, circItm2b regulates Nox4 expression through binding Sirt1, which influences mitochondrial oxidative stress-caused circadian protein losses. Moreover, the knockdown of circItm2b attenuated mitochondrial oxidative stress-induced circadian proteins losses via circItm2b/Sirt1/Nox4 axis after TBI, which might suggest that circItm2b may serve as a prognostic marker for improving sleep disorders and represent a promising therapeutic target for TBI-related sleep disturbances.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"21"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01353-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep disorders (SD) are common sequelae following traumatic brain injury (TBI) and may be linked to mitochondrial oxidative stress dysregulation after TBI. Increasing evidence showed that circRNAs play crucial roles in nervous system diseases. However, the involvement of circRNAs in sleep disturbances after TBI is not characterized. In this study, differentially expressed circRNAs were identified by RNA sequencing. Sleep quality in TBI patients was assessed through sleep scales and electroencephalograms. Further experiments were conducted to investigate the role of circItm2b. We found that circItm2b was elevated and involved sleep disorder in TBI patients. Over-expression of circItm2b might aggravate sleep disturbances in mice after TBI. Mechanically, circItm2b regulates Nox4 expression through binding Sirt1, which influences mitochondrial oxidative stress-caused circadian protein losses. Moreover, the knockdown of circItm2b attenuated mitochondrial oxidative stress-induced circadian proteins losses via circItm2b/Sirt1/Nox4 axis after TBI, which might suggest that circItm2b may serve as a prognostic marker for improving sleep disorders and represent a promising therapeutic target for TBI-related sleep disturbances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CircRNA Itm2b通过与Sirt1-Nox4相互作用诱导氧化应激,从而加重脑外伤后的睡眠障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
期刊最新文献
CircRNA Itm2b induces oxidative stress via the interaction with Sirt1-Nox4 to aggravate sleep disturbances after traumatic brain injury. Multi-pathway targeted therapy of MASH-HCC using miR-22. Genome-wide association study of the fatty liver index in the Taiwanese population reveals shared and population-specific genetic risk factors across ethnicities. Comparison of characteristics and immune responses between paired human nasal and bronchial epithelial organoids. Comprehensive landscape and oncogenic role of extrachromosomal circular DNA in malignant biliary strictures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1