Improving the 3D representation of plant architecture and parameterization efficiency of functional-structural tree models using terrestrial LiDAR data.

IF 2.6 3区 生物学 Q2 ECOLOGY AoB Plants Pub Date : 2024-12-24 eCollection Date: 2025-02-01 DOI:10.1093/aobpla/plae071
Vera Bekkers, Jochem Evers, Alvaro Lau
{"title":"Improving the 3D representation of plant architecture and parameterization efficiency of functional-structural tree models using terrestrial LiDAR data.","authors":"Vera Bekkers, Jochem Evers, Alvaro Lau","doi":"10.1093/aobpla/plae071","DOIUrl":null,"url":null,"abstract":"<p><p>Functional-structural plant (FSP) models are useful tools for understanding plant functioning and how plants react to their environment. Developing tree FSP models is data-intensive and measuring tree architecture using conventional measurement tools is a laborious process. Light detection and ranging (LiDAR) could be an alternative nondestructive method to obtain structural information about tree architecture. This research investigated how terrestrial LiDAR (TLS)-derived tree traits could be used in the design and parameterization of tree FSP models. A systematic literature search was performed to create an overview of tree parameters needed for FSP model development. The resulting structural parameters were compared to LiDAR literature to get an overview of the possibilities and limitations. Furthermore, a tropical tree and Scots pine FSP model were selected and parametrized with TLS-derived parameters. Quantitative structural models were used to derive the parameters and a total of 37 TLS-scanned tropical trees and 10 Scots pines were included in the analysis. Ninety papers on FSP tree models were screened and eight papers fulfilled all the selection criteria. From these papers, 50 structural parameters used for FSP model development were identified, from which 28 parameters were found to be derivable from LiDAR. The TLS-derived parameters were compared to measurements, and the accuracy was variable. It was found that branch angle could be used as model input, but internode length was unsuitable. Outputs of the FSP models with TLS-derived branch angle differed from the FSP model outcomes with default branch angle. Results showed that it is possible to use TLS for FSP model inputs, although with caution as this has implications for the model variable outputs. In the future, LiDAR could help improve efficiency in building new FSP models, increase the accuracy of existing models, add metrics for optimization, and open new possibilities to explore previously unobtainable plant traits.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 2","pages":"plae071"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Functional-structural plant (FSP) models are useful tools for understanding plant functioning and how plants react to their environment. Developing tree FSP models is data-intensive and measuring tree architecture using conventional measurement tools is a laborious process. Light detection and ranging (LiDAR) could be an alternative nondestructive method to obtain structural information about tree architecture. This research investigated how terrestrial LiDAR (TLS)-derived tree traits could be used in the design and parameterization of tree FSP models. A systematic literature search was performed to create an overview of tree parameters needed for FSP model development. The resulting structural parameters were compared to LiDAR literature to get an overview of the possibilities and limitations. Furthermore, a tropical tree and Scots pine FSP model were selected and parametrized with TLS-derived parameters. Quantitative structural models were used to derive the parameters and a total of 37 TLS-scanned tropical trees and 10 Scots pines were included in the analysis. Ninety papers on FSP tree models were screened and eight papers fulfilled all the selection criteria. From these papers, 50 structural parameters used for FSP model development were identified, from which 28 parameters were found to be derivable from LiDAR. The TLS-derived parameters were compared to measurements, and the accuracy was variable. It was found that branch angle could be used as model input, but internode length was unsuitable. Outputs of the FSP models with TLS-derived branch angle differed from the FSP model outcomes with default branch angle. Results showed that it is possible to use TLS for FSP model inputs, although with caution as this has implications for the model variable outputs. In the future, LiDAR could help improve efficiency in building new FSP models, increase the accuracy of existing models, add metrics for optimization, and open new possibilities to explore previously unobtainable plant traits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AoB Plants
AoB Plants PLANT SCIENCES-
CiteScore
4.80
自引率
0.00%
发文量
54
审稿时长
20 weeks
期刊介绍: AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.
期刊最新文献
Localized chilling of crowns promotes floral bud differentiation in strawberry transplants in a closed transplant production system. Acclimation of functional traits leads to biomass increases in leafy green species grown in aquaponics. Ericaceous dwarf shrubs in drained forested peatlands: distribution, dynamics, and key factors in a restoration experiment. Interconnected idioblasts in Peltaea polymorpha: a novel component of the mucilage-secretory apparatus in Malvaceae. Drought drives selection for earlier flowering, while pollinators drive selection for larger flowers in annual Brassica rapa.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1