Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients.

IF 4.1 Q1 CLINICAL NEUROLOGY Brain communications Pub Date : 2025-02-17 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf033
Zhengsheng Zhang, Mengxue Wang, Tong Lu, Yachen Shi, Chunming Xie, Qingguo Ren, Zan Wang
{"title":"Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients.","authors":"Zhengsheng Zhang, Mengxue Wang, Tong Lu, Yachen Shi, Chunming Xie, Qingguo Ren, Zan Wang","doi":"10.1093/braincomms/fcaf033","DOIUrl":null,"url":null,"abstract":"<p><p>The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores (<i>r</i> = 0.17, <i>P</i> = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy (<i>r</i> = 0.50, <i>P</i> < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf033"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores (r = 0.17, P = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy (r = 0.50, P < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients. Association of plasma soluble urokinase plasminogen activator receptor concentrations and migraine with aura: a REFORM study. High-frequency oscillations in epileptic and non-epileptic Alzheimer's disease patients and the differential effect of levetiracetam on the oscillations. Putaminal-cortical circuits predict response of bilateral deep brain stimulation of the subthalamic nucleus in the primary Meige syndrome after 5 years. The inflammatory APRIL (a proliferation-inducing ligand) antagonizes chondroitin sulphate proteoglycans to promote axonal growth and myelination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1