Segmented ring-mesh model of glycosaminoglycan chains based on the 3D analysis of normal individual and Musculocontractural Ehlers-Danlos syndrome skin using scanning transmission electron microscopy.
{"title":"Segmented ring-mesh model of glycosaminoglycan chains based on the 3D analysis of normal individual and Musculocontractural Ehlers-Danlos syndrome skin using scanning transmission electron microscopy.","authors":"Naoki Takahashi, Takuya Hirose, Kiyokazu Kametani, Tomohito Iwasaki, Yasutada Imamura, Tomoki Kosho, Takafumi Watanabe","doi":"10.1093/jmicro/dfaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen fibrils in the dermis are bundled by glycosaminoglycan (GAG) chains of decorin, which contribute to its strength. The three-dimensional structure of collagen fibrils and GAG chains has been discussed on the basis of observations and experiments. This study uses scanning transmission electron microscope (STEM) tomography with high Z-axis resolution to analyze the three-dimensional structure of GAG chains in the dermis from a healthy individual and a patient with Musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS-CHST14). This observation revealed that the dermis from a healthy individual featured multiple GAG chains that wrapped around collagen fibrils and formed incomplete ring structures. However, in the dermis from a patient with mcEDS-CHST14, GAG chains were linear and did not form rings. Based on the relationship between collagen fibrils and GAG chains, we suggest the three-dimensional structure of normal GAG chains in a new model named the \"segmented ring-mesh model.\" The interactions between collagen fibrils and GAG chains in this model also apply to the dermis of mcEDS-CHST14 patients, in which the GAG chain composition changes to become CS-rich and more linear. This change leads to an increased inter-fibrillar space, which inhibits the dense packing of collagen fibrils. These findings suggest that this phenomenon contributes to the skin fragility observed in mcEDS-CHST14 patients. Our study suggests the \"segmented ring-mesh model\" of GAG chains is essential for the dense packing of collagen fibrils in normal dermis. STEM tomography is highly effective in analyzing the three-dimensional structure of collagen fibrils and GAG chains.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Collagen fibrils in the dermis are bundled by glycosaminoglycan (GAG) chains of decorin, which contribute to its strength. The three-dimensional structure of collagen fibrils and GAG chains has been discussed on the basis of observations and experiments. This study uses scanning transmission electron microscope (STEM) tomography with high Z-axis resolution to analyze the three-dimensional structure of GAG chains in the dermis from a healthy individual and a patient with Musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS-CHST14). This observation revealed that the dermis from a healthy individual featured multiple GAG chains that wrapped around collagen fibrils and formed incomplete ring structures. However, in the dermis from a patient with mcEDS-CHST14, GAG chains were linear and did not form rings. Based on the relationship between collagen fibrils and GAG chains, we suggest the three-dimensional structure of normal GAG chains in a new model named the "segmented ring-mesh model." The interactions between collagen fibrils and GAG chains in this model also apply to the dermis of mcEDS-CHST14 patients, in which the GAG chain composition changes to become CS-rich and more linear. This change leads to an increased inter-fibrillar space, which inhibits the dense packing of collagen fibrils. These findings suggest that this phenomenon contributes to the skin fragility observed in mcEDS-CHST14 patients. Our study suggests the "segmented ring-mesh model" of GAG chains is essential for the dense packing of collagen fibrils in normal dermis. STEM tomography is highly effective in analyzing the three-dimensional structure of collagen fibrils and GAG chains.