Zhaoyu Kong, Tao Li, Bernard R. Glick, Hongguang Liu
{"title":"Priority effects of inoculation timing of plant growth-promoting microbial inoculants: role, mechanisms and perspectives","authors":"Zhaoyu Kong, Tao Li, Bernard R. Glick, Hongguang Liu","doi":"10.1007/s11104-025-07291-z","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Plant growth-promoting microorganisms (PGPMs) have been extensively used in agricultural and environmental management strategies to improve plant growth, nutrient absorption and resilience to environmental stress. To ensure the successful establishment and competitive advantage of PGPM inoculants against other source pool microbes, seeds, seedlings and soil are commonly pre-treated with microbial suspensions. The preferential colonization of PGPMs triggers a series of plant–microbe feedback responses via modulating plant root exudates, ultimately affecting the composition and function of the root microbiome. This phenomenon, called priority effects, has profound and long-lasting implications in shaping the assembly and stability of the root-associated microbiome. However, harnessing these priority effects to engineer or manipulate microbiomes remains an area that requires further exploration.</p><h3 data-test=\"abstract-sub-heading\">Scope</h3><p>In this article, we review the priority effects and underlying mechanisms governing the timing of inoculation of PGPM inoculants. We delve into the intricate interactions between PGPM inoculants and root-associated microorganisms, examining both their direct interactions and those mediated indirectly via the modulation of plant root exudates. This exploration aims to uncover the priority effects of PGPM inoculation on the root microbiome and its associated functions.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>We offer insights into the potential applications and further prospects of PGPMs in agricultural and environmental management practices, with a particular focus on their priority effects. This perspective aims to foster a deeper understanding of the role of PGPMs in microbiome engineering and plant health promotion.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"209 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07291-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Plant growth-promoting microorganisms (PGPMs) have been extensively used in agricultural and environmental management strategies to improve plant growth, nutrient absorption and resilience to environmental stress. To ensure the successful establishment and competitive advantage of PGPM inoculants against other source pool microbes, seeds, seedlings and soil are commonly pre-treated with microbial suspensions. The preferential colonization of PGPMs triggers a series of plant–microbe feedback responses via modulating plant root exudates, ultimately affecting the composition and function of the root microbiome. This phenomenon, called priority effects, has profound and long-lasting implications in shaping the assembly and stability of the root-associated microbiome. However, harnessing these priority effects to engineer or manipulate microbiomes remains an area that requires further exploration.
Scope
In this article, we review the priority effects and underlying mechanisms governing the timing of inoculation of PGPM inoculants. We delve into the intricate interactions between PGPM inoculants and root-associated microorganisms, examining both their direct interactions and those mediated indirectly via the modulation of plant root exudates. This exploration aims to uncover the priority effects of PGPM inoculation on the root microbiome and its associated functions.
Conclusions
We offer insights into the potential applications and further prospects of PGPMs in agricultural and environmental management practices, with a particular focus on their priority effects. This perspective aims to foster a deeper understanding of the role of PGPMs in microbiome engineering and plant health promotion.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.