Cl2sum: abstractive summarization via contrastive prompt constructed by LLMs hallucination

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2025-02-19 DOI:10.1007/s40747-025-01795-y
Xiang Huang, Qiong Nong, Xiaobo Wang, Hongcheng Zhang, Kunpeng Du, Chunlin Yin, Li Yang, Bin Yan, Xuan Zhang
{"title":"Cl2sum: abstractive summarization via contrastive prompt constructed by LLMs hallucination","authors":"Xiang Huang, Qiong Nong, Xiaobo Wang, Hongcheng Zhang, Kunpeng Du, Chunlin Yin, Li Yang, Bin Yan, Xuan Zhang","doi":"10.1007/s40747-025-01795-y","DOIUrl":null,"url":null,"abstract":"<p>The rise of Large Language Models (LLMs) has further led to the development of text summarization techniques and also brought more attention to the problem of hallucination in the research of text summarization. Existing work in current text summarization research based on LLMs typically uses In-Context Learning (ICL) to supply accurate (document-summary) pairs of samples to the model, thus allowing the model to be more explicit in predicting the target. However, in this way, models can only determine what to do, without explicitly prohibiting what models cannot do. It is highly likely to lead to increased hallucinations due to excessive model-free play. In this paper, to alleviate the problem of hallucination in text summarization based on LLMs, we propose CL2Sum, a method that combines Contrastive Learning (CL) and ICL for summarization. After analysing the generated summaries of LLMs and summarising their hallucination types, we provided the models with accurate summaries and summaries containing hallucinations as ICL instances, either automatically or artificially. It aims to guide the model to make accurate predictions according to positive samples while also avoiding hallucinations similar to those in negative samples. Finally, a series of comparative experiments were conducted on summary datasets of different lengths and languages. The results show that CL2Sum effectively alleviates the hallucination problem of text summaries while also improving the overall quality of the generated summaries. Moreover, it can be widely adapted to text summarization tasks in different scenarios with a certain degree of robustness.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"13 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01795-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of Large Language Models (LLMs) has further led to the development of text summarization techniques and also brought more attention to the problem of hallucination in the research of text summarization. Existing work in current text summarization research based on LLMs typically uses In-Context Learning (ICL) to supply accurate (document-summary) pairs of samples to the model, thus allowing the model to be more explicit in predicting the target. However, in this way, models can only determine what to do, without explicitly prohibiting what models cannot do. It is highly likely to lead to increased hallucinations due to excessive model-free play. In this paper, to alleviate the problem of hallucination in text summarization based on LLMs, we propose CL2Sum, a method that combines Contrastive Learning (CL) and ICL for summarization. After analysing the generated summaries of LLMs and summarising their hallucination types, we provided the models with accurate summaries and summaries containing hallucinations as ICL instances, either automatically or artificially. It aims to guide the model to make accurate predictions according to positive samples while also avoiding hallucinations similar to those in negative samples. Finally, a series of comparative experiments were conducted on summary datasets of different lengths and languages. The results show that CL2Sum effectively alleviates the hallucination problem of text summaries while also improving the overall quality of the generated summaries. Moreover, it can be widely adapted to text summarization tasks in different scenarios with a certain degree of robustness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Tailored meta-learning for dual trajectory transformer: advancing generalized trajectory prediction Control strategy of robotic manipulator based on multi-task reinforcement learning Explainable and secure framework for autism prediction using multimodal eye tracking and kinematic data A novel three-way distance-based fuzzy large margin distribution machine for imbalance classification Chaos-enhanced metaheuristics: classification, comparison, and convergence analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1